Mucosal Mast Cells Contribution in Intestinal Defense of Chickens (*Gallus domesticus*) Infected Naturally by *Ascaridia galli*

1Ummu Balqis, 2Masda Admi, 3Darmawi, and 4Muhammad Hambal

1 Laboratory of Pathology, Faculty of Veterinary Medicine, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia;
2Almuslim University, Bireuen, Aceh, Indonesia;
3Laboratory of Microbiology, Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh 23111, Indonesia;
4Laboratory of Parasitology, Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh 23111, Indonesia;
Corresponding Author: d_darmawi@yahoo.com

Abstract

This study was aimed at finding out the investigation of mucosal mast cells in intestines of chicken that were naturally infected by *Ascaridia galli*. Amount of ten intestine of freshly slaughtered chickens (*Gallus domesticus*) found from local abattoir in Banda Aceh were divided into two groups containing five intestines of each. Mucosal mast cells count were done of which histologic slides were made in stained serial histological sections with Alcian blue (pH 0.3) and Safranin-O (pH 0.1) of the intestines. The result showed that the mucosal mast cells increased significantly (P < 0.05) in intestines of chickens infected naturally by survival *A. galli* adult worms. It was concluded that the intestinal defense of chickens against parasite infection is associated with the mucosal mast cells contribution by creating an environment hostile to the establishment and survival of intestinal nematodes, *A. galli*.

Keywords: mast cell, *Ascaridia galli*, chicken, intestine

Introduction

Ascaridia galli is an important intestinal nematode of poultry in many parts of the word and among the most pathogenic of parasites to localize in intestine of laying hens. Chronic infection develops after continuous ingestion of infective stages larvae and usually result in anemia, edema, weight-loss, and diarrhea, which in severe cases, can result in death.

Mast cell responses have been suggested in protection against *A. galli* infections. Infections with 1000 dose...
Histological Procedure
Intestine’s segment was dissected, flushed with cold sterile saline solution, opened longitudinally, and placed, mucosa side up, onto small pieces of blotting paper. The segments were then fixed in 10% buffered normal formalin. This process was performed for each laying hen using sterile instruments for each dissection. Fixed samples were dehydrated in the ascending concentrations of ethanol (50%, 60%, 70%, 80%, 96% (1), 96% (2) and 100%). The samples were cleared in xylol and were embedded in paraffin wax. Three of each histological sections (3-5 µm of thickness) were stained with Alcian blue (pH 0,3) and Safranin-O (pH 0,1) (Sigma). After washing, sections were counterstained with eosin and mounted as described by Darmawi et al. (2013) with certain modifications.

Mast Cell Staining
The number of mast cells per 10 villus crypt units (VCUs) was counted on each section. Mast cell counts were performed under light microscopy using an eyepiece square graticule (eyepiece ×10, objective ×40), and data expressed as mean number of mucosal mast cells (MMCs) per VCU as described by previous authors (McDermott et al., 2003; Noviana et al., 2004; Li et al., 2004; Königová et al., 2008; Darmawi et al., 2013) with certain modifications.

Statistical analysis
Data were analyzed by the Student t test, where t tests were used for comparisons of mast cell numbers. P values of < 0.05 were taken to indicate a significant difference.

Results and Discussion
In this study we found that the number of mucosal mast cells in healthy chickens is stable, but their numbers increase in A. galli infection (Table 1).

Table 1. Mucosal mast cell number/10 villus crypt unit (mean ± SD) in the intestines from uninfected, and infected naturally by A. galli in chickens.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Mucosal mast cell number in intestines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninfected</td>
<td>321.32 ± 57.42*</td>
</tr>
<tr>
<td>Infected</td>
<td>391.41 ± 89.73*</td>
</tr>
</tbody>
</table>

*Significantly different from uninfected and infected chickens (P < 0.05).

Results shown are representative of two independent experiments. MMC/10VCU ± SD

In this study, mucosal mast cells significantly increased in intestines of chickens infected naturally by A. galli in comparison with uninfected chickens as shown in Table 1. Our results in this study agree with and support those of Onah & Nawa, (2004), Li et al., 2004), (Vukman et al., 2013), Ball et al., (2013), De-yuan et al. (2003), Suzuki et al. (2008), and Königová et al. (2008) who showed mast cells are contributed in intestinal defense against worm infection. Our previous study explained that large numbers of mast cells were observed in the jejunum of infected laying hens. Laying hens infected with embryonated eggs of A. galli accumulated mast cells in the jejunum (Darmawi et al., 2013).

In the chickens, A. galli adult worms establish in the lumen of intestine known "lumen phase". However, A. galli parasite was not only able to survive in the lumen but could also penetrate in the barrier intestinal mucosal defense with migration to the tissue "histotrophic phase". Previously investigator described that A. galli infective larvae invaded in the epithelium and located in the lamina propria after hatching in lumen (Luna-Olivares et al., 2012). There are some histopathological changes in intestine of Gallus domesticus caused by A. galli infection. In confirmation of our previous study, we found that the chicken (G. domesticus) infected naturally by A. galli caused the infiltration of inflammatory cell and hemorrhage in the intestine (Hambal et al., 2013). In addition, the more small intestine of the chickens suffered histopathological changes namely desquamation, hiperplasia, fusion that occurs in the jejunum (Balqis et al., 2013).

Various authors described that increased numbers of mucosal mast cells are often observed in affected tissues during helminth infections (Onah & Nawa, 2004; Li et al., 2004; Vukman et al., 2013; Ball et al., 2013; De-yuan et al. 2003; Suzuki et al., 2008; Königová et al., 2008). This phenomenon supported by Darmawi et al. (2013) who observed that mastocytosis occurred in jejunal sections of laying hens challenged with embryonated of A. galli. Infection induces mucosal mast cells degranulation in the intestinal that is considered to be a host defense mechanism against the parasite. In support of this hypothesis, various authors described that mast cells involved in mucosal defense mechanism. Various authors described that mucosal mast cells play an important role as effector cell activated in response to most helminth infections, contribute to expulsion of a number of...
gastrointestinal nematode parasites. Migration of mast cells induced by tegumental coat antigen of *Fasciola hepatica* (Vukman et al., 2013). Mastocytosis was activated in jejunum of mice challenged with *Strongyloides venezuelensis* (Onah & Nawa, 2004). Mucosal mast cells are an important effector for *Trichinella spiralis* expulsion in rats and mice (Suzuki et al., 2008). The larger numbers of mucosal mast cells in abomasal mucosa of lambs infected with *Haemonchus contortus* (Shakya et al., 2009), followed by *H. contortus* expulsion from abomasums of sheep (Ortolani et al., 2013).

Conclusion

The mucosal mast cells contribute to intestinal defense in chickens by creating an environment hostile to the establishment and survival of intestinal nematodes, *A. galli*.

Acknowledgements

We wish to thank the chairman and all the teaching staff of Pathology Laboratory, and Research Laboratory Faculty of Veterinary Medicine that freely pleased us to conduct this research.

References

