Irradiation of intraerythrocytic Plasmodium berghei with a fractionated dose of gamma rays does not effectively reduce the infectivity in mice Mus musculus

Mukh Syaifudin, Siti Nurhayati, Darlina Darlina, Yanti Lusiyanti, Teja Kisnanto

Abstract


Malaria infection kills more than one million human every year, mainly under-5-year-old children, including in South East Asian nations. Gamma radiation given at a single dose is commonly used to create the attenuated Plasmodium parasites to get vaccine materials. However, there is no study on the infectivity of parasites after fractionated γ-radiation. This study aimed to assess the infectivity of parasites after irradiated with fractionated γ-rays in mice. A number of Plasmodium bergheithat was irradiated in two fractions of 100 and 50 Gy, 100 and 75 Gy; and 100 and 100 Gy within 5 minutes of interval time was injected intraperitoneally into 12 mice. Mice injected with unirradiated parasites (0 Gy) served as a control group. The parasitemia level of intraerythrocytic parasites in each group was observed at days post injection up to 20 days by making Giemsa stained thin blood smears and observed under the microscope. Results showed that fractionation radiation did not effectively attenuate the parasites where they still grew in blood of mice, except for 100+75 Gy. There are no significant differences among the treatment groups (p>0.05). This is different from irradiation at the single dose that resulted in almost completely attenuated parasites mainly the dose of 150 Gy. This implicating that irradiation of gamma rays at a single dose is a better way to mitigate parasites than fractionation dose as the infectivity of irradiated parasites were lower compared to that of fractionated dosage.

 

Keywords: Malaria vaccine, Gamma radiation, Fractionation, Parasitemia


Full Text:

PDF

References


Alan, P., M. Ahmed. 2011. Hypofractionation: Scientific Concepts and Clinical Experiences. 1st. Ed. LimiText Publishing, Ellicot City.

Anonimous, Radiation Weakened Parasites: Possible New Malaria Vaccine? Retrieved on Saturday, November 10, 2007 at 1:20:29 PM (http://www.medindia.net/news/Radiation-Weakened-Parasites-Possible-New-Malaria-Vaccine-29169-1.htm.

Bijker, E.M., S. Borrmann, S.H. Kappe, B. Mordmuller, B.K. Sack, S.M. Khan. 2015. Novel approaches to whole sporozoite vaccination against malaria. Vaccine, 33(52):7462-7468.

Cabiscol, E., J. Tamarit, J. Ros. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology, 3:3–8.

Carlton, J.M., S.V. Angiuoli, B.B. Suh, T.W. Kooij, M. Pertea, J.C. Silva M.D. Ermolaeva, J.E. Allen, J.D. Selengut, H.L. Koo, J.D. Peterson, M. Pop, D.S. Kosack, M.F. Shumway, S.L. Bidwell, S.J. Shallom, S.E. van Aken, S.B. Riedmuller, T.V. Feldblyum, J.K. Cho, J. Quackenbush, M. Sedegah, A. Shoaibi, L.M. Cummings, L. Florens, J.R. Yates, J.D. Raine, R.E. Sinden, M.A. Harris, D.A. Cunningham, P.R. Preiser, L.W. Bergman, A.B. Vaidya, L.H. van Lin, C.J. Janse, A.P. Waters, H.O. Smith, O.R. White, S.L. Salzberg, J.C. Venter, C.M. Fraser, S.L. Hoffman, M.J. Gardner, D.J. Carucci. 2002. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature, 419:512-519.

Cockburn, I.A., Y.C. Chen, M.G. Overstreet, J.R. Lees, N. van Rooijen, D.L. Farber, F. Zavala. 2010. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites. PLoS Pathogens, 6(5): e1000877.

Darlina. 2011. Rodent malaria parasite as model in vaccine research with nuclear technique. Alara Bulletin, 13(2): 53-60.

Draper, S.J., B.K. Sack, C.R. K ing, C.M. Nielsen, J.C. Rayner,M.K. Higgins, C.A. Long, R.A. Seder. 2018. Malaria Vaccines: Recent Advances and New Horizons. Cell Host and Microbe, 24(1):43–56.

Duncan, C.J.A., S.H. Sheehy, K.J. Ewer, A.D. Douglas, K.A. Collins, F.D. Halstead, S.C. Elias, P.J. Lillie, K. Rausch, J. Aebig, K. Miura, N.J. Edwards, I.D. Poulton, A. Hunt-Cooke, D.W. Porter, F.M. Thompson, R. Rowland, S.J. Draper, S.C. Gilbert, M.P. Fay, C.A. Long, D. Zhu, Y. Wu, L.B. Martin, C.F. Anderson, A.M. Lawrie, A.V. Hill, R.D. Ellis. 2011. Impact on malaria parasite multiplication rates in infected volunteers of the protein-in-adjuvant vaccine AMA1-C1/Alhydrogel+CPG 7909. PLoS ONE, 6(7):e22271.

Elsaid, M.M.A., R.W.A. Vitor, F.J.G. Frézard, M.S. Martins. 1999. Protection against toxoplasmosis in mice immunized with different antigens of Toxoplasma gondii incorporated into liposome, Brazilian Memorias Instituto Oswaldo Cruz, 94(4):485-490.

Feachem, R.G., A.A. Phillips, J. Hwang, C. Cotter, B. Wielgosz, B.M. Greenwood, O. Sabot, M.H. Rodriguez, R.R. Abeyasinghe, T.A. Ghebreyesus, R.W. Snow. 2010. Shrinking the malaria map: progress and prospects. Lancet, 376:1566-1578.

Fulda, S., A.M. Gorman, O. Hori, A. Samali. 2010. Cellular stress responses: cell survival and cell death. International Journal of Cell Biology, 2010: 214074.

Gerald, N.J., V. Majam, B. Mahajan, Y. Kozakai, S. Kumar. 2011. Protection from experimental cerebral malaria with a single dose of radiation attenuated, blood-stage Plasmodium berghei parasites. PLoS One., 6: e24398.

Hall, E.J., D.J. Brenner. 1991. The dose-rate effect revisited: radiobiological considerations of importance in radiotherapy. International Journal of Radiation Oncology Biology Physics, 21(6):1403-1414.

Han, W., K.N. Yu. 2009. Response of cells to ionizing radiation. Advances in Biomedical Sciences and Engineering. SC Tjong (Ed.). Bentham Sciences Publisher Ltd., Hongkong. pp. 204-262.

Hoffman, S.L., P.F. Billingsley, E. James, A. Richman, M. Loyevsky, T. Li, S. Chakravarty, A. Gunasekera, R. Chattopadhyay, M. Li, R. Stafford, A. Ahumada, J.E. Epstein, M. Sedegah, S. Reyes, T.L. Richie, K.E. Lyke, R. Edelman, M.B. Laurens, C.V. Plowe, B.K.L. Sim. 2010. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Human Vaccines, 6:97-106.

ICRP Publication. 2011. Early and late effects of radiation in normal tissues and organs: threshold doses for tissue reactions and other non-cancer effects of radiation in a radiation protection context, The International Commission on Radiological Protection. Ottawa. pp.17-20.

International Atomic Energy Agency. 2014. Radiation Protection in Radiotherapy: Part 3 Biological Effects, IAEA Training Material on Radiation Protection in Radiotherapy. Vienna Austria.

Khorramizadeh, M., A. Saberi, M. Tahmasebi–birgani, P. Shokrani, A. Amouhedari. 2017. Impact of prolonged fraction delivery time modelling stereotactic body radiation therapy with high dose hypofractionation on the killing of cultured ACHN renal cell carcinoma cell line. Journal of Biomedical and Physical Engineering, 7(3): 205–216.

Luke, T.C., S.L. Hoffman. 2003. Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine. Journal of Experimental Biology, 206:3803-3808.

Mahmoudi, S., H. Keshavarz. 2018. Malaria vaccine development: the need for novel approaches: A review article. Iranian Journal of Parasitology, 13(1):1–10.

Mettler, F.A. Jr., G.L. Voelz. 2002. Major radiation exposure – what to expect and how to respond. New England Journal of Medicine, 346:1554-1561.

Moding, E.J., M.B. Kastan, D.G. Kirsch. 2013. Strategies for optimizing the response of cancer and normal tissues to radiation. Nature Review Drug Discovery, 12(7): 526–542.

Oakley, M.S., N. Gerald, V. Anantharaman, Y. Gao, V. Majam, B. Mahajan, P.T. Pham, L.L. Cole, T.G. Myers, T.F. McCutchan, S.L. Morris, L. Aravind, S. Kumar. 2013. Radiation-induced cellular and molecular alterations in asexual intraerythrocytic Plasmodium falciparum. Journal of Infectious Diseases, 207(1):164–174.

Ouattara, A., M.B. Laurens. 2015. Vaccines against malaria. Clinical Infectious Diseases, 60(6): 930–936.

Ramani, S., S.C. Parija, J. Mandal, A. Hamide, V. Bhat. 2016. Detection of chloroquine and artemisinin resistance molecular markers in Plasmodium falciparum: A hospital based study. Tropical Parasitology, 6(1):69–77.

Seo, H.S. 2015. Application of radiation technology in vaccines development. Clinical and Experimental Vaccine Research, 4(2):145–158.

Stewart, F.A., A.V. Akleyev, M. Hauer-Jensen, J.H. Hendry, N.J. Kleiman, T.J.Macvittie, B.M. Aleman, A.B. Edgar, K. Mabuchi, C.R. Muirhead, R.E. Shore, W.H. Wallace. 2012. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Annals of the ICRP., 41(1-2):1-322.

Syaifudin, M., D. Tetriana, Darlina, S. Nurhayati. 2011. The feasibility of gamma irradiation for developing malaria vaccine. Atom Indonesia, 37(3):91-101.

Syaifudin, M., Darlina, T. Rahardjo, D. Tetriana, S. Nurhayati, H.E.S. Surniyantoro, T. Kisnanto. 2013. Efectiveness of gamma rays in attenuating rodent malaria parasites of Plasmodium berghei in blood of mice. Atom Indonesia, 39(1): 19-23.

Tizifa, T.A., A. N. Kabaghe, R.S. McCann, H. van den Berg, M.V. Vugt, K.S. Phiri. 2018. Prevention efforts for malaria. Current Tropical Medicine Reports, 5(1):41–50.

World Health Organization. 2018. World Malaria Report 2018. Geneva.




DOI: https://doi.org/10.13170/ajas.4.1.13558

Refbacks

  • There are currently no refbacks.


DETAIL VISITORS STATISTIC COUNTER CLICK HERE

This work  is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License (CC - BY - NC 4.0).