Pythagorean Theorem Concept Image in Junior High School: An Analysis in The Online-Based Learning

Mohamad Gilar Jatisunda, Vici Suciawati, Dede Salim Nahdi

Abstract


The concept image comprises all the cognitive structures in an individual's mind connected with a specific notion. However, if the learning situation is not relevant to help students construct knowledge and provide meaningful experiences, it will affect their concept image. This study aims to examine the concept of the image of the Pythagorean theorem during online-based learning. The research is a qualitative approach, and the method is phenomenological to understand the meaning for the participants of their concept image. Initially, this study enrolled 66 students. Two students were selected as research subjects and acted as resource persons to provide adequate contextualization based on students who answered right and wrong. Data collection combines data from the outcomes of testing the Pythagorean theorem test, interviews, and literature studies. The data analysis technique employed is Interpretative Phenomenological Analysis (IPA). There are six categories of student concept image. Based on in-depth interviews with two students who answered correctly and incorrectly, students were given inconsistent meanings of the Pythagorean theorem due to the learning situation to improve students' understanding of the subject.

Keywords


concept image, pythagorean theorem, online-based learning, junior high school

Full Text:

PDF

References


Anumba, C. J., Egbu, C., & Carrillo, P. (2008). Knowledge management in construction. John Wiley & Sons.

Artigue, M. (2016). Mathematics education research at university level: Achievements and challenges. https://doi.org/10.4324/9780429346859

Attorps, I. (2006). Mathematics teachers’ conceptions about equations. University of Helsinki,.

Barnard, T., & Tall, D. (1997). Cognitive units, connections and mathematical proof. PME Conference, 2, 2–41.

Brousseau, G. (1976). Les obstacles épistémologiques et les problèmes en mathématiques. In W. V. et Jacqueline Vanhamme (Ed.), La problématique et l’enseignement de la mathématique. Comptes rendus de la XXVIIIe rencontre organisée par la Commission Internationale pour l’Etude et l’Amélioration de l’Enseignement des Mathématiques (pp. 101–117). Louvain-la-neuve.

Brousseau, G. (2006). Theory of didactical situations in mathematics: Didactique des mathématiques, 1970--1990 (Vol. 19). Springer Science & Business Media.

Burrill, G. (2019). Building concept images of fundamental ideas in statistics: The Role of Technology. In Topics and Trends in Current Statistics Education Research (pp. 123–152). Springer. https://doi.org/10.1007/978-3-030-03472-6_6

Chapman, E., & Smith, J. A. (2002). Interpretative phenomenological analysis and the new genetics. Journal of Health Psychology, 7(2), 125–130. https://doi.org/10.1177/1359105302007002397

Chirinda, B., Ndlovu, M., & Spangenberg, E. (2021). Teaching mathematics during the covid-19 lockdown in a context of historical disadvantage. Education Sciences, 11(4), 177. https://doi.org/10.3390/educsci11040177

Clements, D. H., & Sarama, J. (2011). Early childhood teacher education: The case of geometry. Journal of Mathematics Teacher Education, 14(2), 133–148. https://doi.org/10.1007/s10857-011-9173-0

Cobb, P. (1994). Where is the mind? Constructivist and sociocultural perspectives on mathematical development. Educational Researcher, 23(7), 13–20. https://doi.org/10.3102/0013189X023007013

Creswell, J. W. (2012). Educational research: Planning, conducting and evaluating quantitative and qualitative research (4th ed). Pearson education, Inc.

Curtain, R. (2001). Promoting youth employment through information and communication technologies (ICT): Best practice examples in Asia and the Pacific. ILO/Japan Tripartite Regional Meeting on Youth Employment in Asia and the Pacific. Bangkok.

Cutri, R. M., & Mena, J. (2020). A critical reconceptualization of faculty readiness for online teaching. Distance Education, 41(3), 361–380. https://doi.org/10.1080/01587919.2020.1763167

Cutri, R. M., Mena, J., & Whiting, E. F. (2020). Faculty readiness for online crisis teaching: transitioning to online teaching during the COVID-19 pandemic. European Journal of Teacher Education, 43(4), 523–541. https://doi.org/10.1080/02619768.2020.1815702

Dahl, B. (2017). First-year non-STEM majors’ use of definitions to solve calculus tasks: Benefits of using concept image over concept definition? International Journal of Science and Mathematics Education, 15(7), 1303–1322. https://doi.org/10.1007/s10763-016-9751-9

Dedy, E., & Sumiaty, E. (2017). Desain didaktis bahan ajar matematika SMP berbasis learning obstacle dan learning trajectory. JRPM (Jurnal Review Pembelajaran Matematika), 2(1), 69–80. https://doi.org/10.15642/jrpm.2017.2.1.69-80

Dreyfus, Т. (2014). Solid Findings: Concept images in students’ mathematical reasoning. Newsletter of the European Mathematical Society, 93, 50–52.

Engelke Infante, N., Murphy, K., Glenn, C., & Sealey, V. (2018). How concept images affect students’ interpretations of Newton’s method. International Journal of Mathematical Education in Science and Technology, 49(5), 643–659. https://doi.org/10.1080/0020739X.2017.1410737

Fatio, N. A. (2020). Kajian concept image siswa pada topik persamaan dan pertidaksamaan linier satu variabel. Universitas Pendidikan Indonesia.

Frade, C., & Borges, O. (2006). The tacit-explicit dimension of the learning of mathematics: An investigation report. International Journal of Science and Mathematics Education, 4(2), 293–317.

Gagatsis, A., & Kyriakides, L. (2000). Teachers’ attitudes towards their pupils’ mathematical errors. Educational Research and Evaluation, 6(1), 24–58. https://doi.org/10.1076/1380-3611(200003)6:1;1-I;FT024

Gagatsis, A., & Patronis, T. (1990). Using geometrical models in a process of reflective thinking in learning and teaching mathematics. Educational Studies in Mathematics, 21(1), 29–54. https://doi.org/10.1007/BF00311014

Giraldo, V., Tall, D., & Mariano Carvalho, L. (2003). Using theoretical-computational conflicts to enrich the concept image of derivative. Research in Mathematics Education, 5(1), 63–78. https://doi.org/10.1080/14794800008520115

Green, R. H., & Olsher, S. (2018). Creating examples as a way to examine mathematical concepts’ definitions. Edited by: Hans-Georg Weigand, Alison Clark-Wilson, Ana Donevska, 99.

Habineza, F. (2013). A case study of analyzing student teachers’ concept images of the definite integral. Rwandan Journal of Education, 1(2), 38–54.

Haryati, O. (2020). Kajian concept image pada materi segitiga tingkat sekolah menengah pertama. Universitas Pendidikan Indonesia.

Herschel, R. T., Nemati, H., & Steiger, D. (2001). Tacit to explicit knowledge conversion: knowledge exchange protocols. Journal of Knowledge Management. https://doi.org/10.1108/13673270110384455

Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88–140. https://doi.org/10.3102/00346543067001088

Hutapea, M. L., Suryadi, D., & Nurlaelah, E. (2015). Analysis of students’epistemological obstacles on the subject of pythagorean theorem. Jurnal Pengajaran MIPA, 20(1), 1–10.

Jatisunda, M. G. (2019). Kesulitan siswa dalam memahami konsep trigonometri di lihat dari learning obstacles. Didactical Mathematics, 2(1), 9–16. https://doi.org/10.31949/dmj.v2i1.1664

Leontyeva, I. A. (2018). Modern distance learning technologies in higher education: Introduction problems. Eurasia Journal of Mathematics, Science and Technology Education, 14(10), em1578.

Lester, S. (1999). An introduction to phenomenological research. Stan Lester Developments, Taunton. Retrieved from Http.

Lithner, J. (2011). University mathematics students’ learning difficulties. Education Inquiry, 2(2), 289–303. https://doi.org/10.3402/edui.v2i2.21981

Maulida, L. (2018). Kajian concept image pada materi sistem pertidaksamaan linear dua variabel. universitas Pendidikan Indonesia.

Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students’ learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 29–40. https://doi.org/10.1016/j.compedu.2013.07.033

NCTM. (2020). Moving forward: Mmathematics learning in the era of COVID-19.

Qutoshi, S. B. (2018). Phenomenology: A philosophy and method of inquiry. Journal of Education and Educational Development, 5(1), 215–222.

Rachmawati, T. K. (2017). An analysis of students’ difficulties in solving story based problems and its alternative solutions. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 1(2), 140–153.

Rahayu, E. G. S., Juandi, D., & Jupri, A. (2021). Didactical design for distance concept in solid geometry to develop mathematical representation ability in vocational high school. Journal of Physics: Conference Series, 1882(1), 12077. https://doi.org/10.1088/1742-6596/1882/1/012077

Rahayu, T., & Alghadari, F. (2019). Identitas bayangan konsep limas: analisis terhadap konsepsi matematis siswa. Inomatika, 1(1), 17–30. https://doi.org/10.35438/inomatika.v1i1.134

Saputro, D. A. (2020). Perbedaan concept image mata pelajaran matematika pada materi bangun datar kelas iv sekolah dasar. Universitas Pendidikan Indonesia.

Schmid, R. F., Bernard, R. M., Borokhovski, E., Tamim, R., Abrami, P. C., Wade, C. A., Surkes, M. A., & Lowerison, G. (2009). Technology’s effect on achievement in higher education: a Stage I meta-analysis of classroom applications. Journal of Computing in Higher Education, 21(2), 95–109. https://doi.org/10.1007/s12528-009-9021-8

Schunk, D. H. (2012). Learning theories an educational perspective sixth edition. Pearson.

Seel, N. M. (2011). Encyclopedia of the sciences of learning. Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-1428-6

Semadeni, Z. (2008). Deep intuition as a level in the development of the concept image. Educational Studies in Mathematics, 68(1), 1–17. https://doi.org/10.1007/s10649-007-9105-1

Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–23. https://doi.org/10.17763/haer.57.1.j463w79r56455411

Smith, J. A. (1996). Beyond the divide between cognition and discourse: Using interpretative phenomenological analysis in health psychology. Psychology and Health, 11(2), 261–271. https://doi.org/10.1080/08870449608400256

Smith, J. A., Jarman, M., & Osborn, M. (1999). Doing interpretative phenomenological analysis. Qualitative Health Psychology: Theories and Methods, 218–240.

Suryadi. (2015a). Refleksi kritis tradisi pendidikan matematika dan sebuah gagasan alternatif. In Pendidikan Disiplin Ilmu Abad 21: Sebuah Kajian Prospektif. (pp. 122–147). UPI PRESS.

Suryadi. (2019). Landasan perancangan penelitian desain didaktis (DDR). In Landasan Filosofis Penelitian Desain Didaktis (DDR) (pp. 43–58). Gapura Press.

Suryadi, D. (2010). Menciptakan proses belajar aktif: Kajian dari sudut pandang teori belajar dan teori didaktik. Bandung: Tidak Diterbitkan.

Suryadi, D. (2015b). Refleksi kritis tradisi pendidikan matematika dan sebuah gagasan alternatif. In Pendidikan Disiplin Ilmu Abad 21: Sebuah Kajian Prospektif.

Tall, D., & Vinner, S. (1981a). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169. https://doi.org/10.1007/BF00305619

Tall, D., & Vinner, S. (1981b). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169. https://doi.org/10.1007/BF00305619

Tsamir, P., Tirosh, D., Levenson, E., Barkai, R., & Tabach, M. (2015). Early-years teachers’ concept images and concept definitions: triangles, circles, and cylinders. ZDM, 47(3), 497–509. https://doi.org/10.1007/s11858-014-0641-8

Turri, J. (2012). Is knowledge justified true belief? Synthese, 184(3), 247–259. https://doi.org/10.1007/s11229-010-9773-8

Uriarte, F. A. (2008). Introduction to knowledge management: A brief introduction to the basic elements of knowledge management for non-practitioners interested in understanding the subject. Asean Foundation.

Viholainen, A. (2008). Incoherence of a concept image and erroneous conclusions in the case of differentiability. The Mathematics Enthusiast, 5(2), 231–248.

Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14(3), 293–305. https://doi.org/10.1080/0020739830140305

Vinner, S. (2002). The role of definitions in the teaching and learning of mathematics. In Advanced mathematical thinking (pp. 65–81). Springer. https://doi.org/10.1007/0-306-47203-1_5

Virtanen, I. (2013). In search for a theoretically firmer epistemological foundation for the relationship between tacit and explicit knowledge. Electronic Journal of Knowledge Management, 11(2), pp118--126.

Wawro, M., Sweeney, G. F., & Rabin, J. M. (2011). Subspace in linear algebra: Investigating students’ concept images and interactions with the formal definition. Educational Studies in Mathematics, 78(1), 1–19. https://doi.org/10.1007/s10649-011-9307-4

Yadrika, G., Amelia, S., Roza, Y., & Maimunah, M. (2019). Analisis kesalahan siswa SMP dalam menyelesaikan soal pada materi teorema pythagoras dan lingkaran. JPPM (Jurnal Penelitian Dan Pembelajaran Matematika), 12(2), 195–212. https://doi.org/10.30870/jppm.v12i2.6157




DOI: https://doi.org/10.24815/jdm.v8i2.21902

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Mohamad Gilar Jatisunda

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Jurnal Didaktik Matematika

ISSN 2355 – 4185 (print) | 2548 – 8546 (online)

Published by:

Master Program of Mathematics Education incorporated with Himpunan Matematika Indonesia (Indonesian Mathematical Society/IndoMs)

Faculty of Teacher Training and Education

Universitas Syiah Kuala

Darussalam, Banda Aceh, Indonesia - 23111

Website : http://jurnal.unsyiah.ac.id/DM/ 
Email     : jurnal.jdm@unsyiah.ac.id 

Creative Commons License

Jurnal Didaktik Matematika by Program Studi Magister Pendidikan Matematika FKIP Universitas Syiah Kuala is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://jurnal.unsyiah.ac.id/DM