Dekomposisi Genetik tentang Hambatan Mahasiswa dalam Menerapkan Sifat-sifat Turunan

Wahyu Widada, Dewi Herawaty

Abstract


Limit was to basic concept of derivative. The results of previous research found that learners have obstacles in understanding the limit function, consequently, the occurrence of difficulties and mistakes learners understand the concept and derived principles. This study aims to determine the obstacles of learners in applying derived properties. The approach of this research is qualitative by applying task-based interview with subject of 10 students selected by certain condition from 70 students in Mathematics Education Study Program of University of Bengkulu. The researcher is the main instrument in this research which is guided by the interview sheet and duty sheet. Data analysis was performed by genetic decomposition analysis. The results of this study indicate that the barriers of learners in applying analytic concepts and properties analytically include, the tangent line almost parallel to the y-axis, the break point (cusp) at x = -4, the second derivative, the extreme point, the emergence of contradictions, asymptotes flat, and do not understand conceptually. To overcome the obstacles of learners in understanding the concept and the nature of derivatives and its application, it is suggested to apply the mathematics learning model based on the extended triad++.

Keywords


obstacles, genetic decomposition, derivative properties

Full Text:

PDF

References


Baddely, A. (1998). Your Memory A User’s Guide. London: Prion

Baker, B.; Cooley, L.; & Trigueros, M. (2000). A Calculus Graphing Schema. Journal for Research in Mathematical Education. 31(5).

Davis, Gary E. & Tall, David O. (1999). What is a scheme? http://www.cs.gsu.edu/ ~rumec/schemes.htm

DeVries, David J. (2000). RUMEC/APOS Theory. http://www.cs.gsu.edu/~rumec/

Dubinsky, E. & Lewin, P. (1986). Reflective abstraction and Mathematical Induction: The Decomposition of Induction and Compactness. Journal Mathematical Behavior. Vol. 5 http: www.sciencedirect/science/journal/

Dubinsky, E. & McDonald, Michael A. (2000). APOS: A Constructivist Theory of Learning in Undergraduate Mathematics Education Research. http:/www.telri.ac.uk/CM/Paper.pdf

Dubinsky, E. (1987). Teaching Mathematical Induction. Journal Mathematical Behavior. 6 (1) http: www.sciencedirect/science/journal/

Dubinsky, E. (1989). On Teaching Mathematical Induction II. Journal Mathematical Behavior. Vol. 8http: www.sciencedirect/science/journal/

Dubinsky, E. (1995). ISELT: A Programming Language for Learning Mathematics. Communications on Pure and Applied Mathematics. Vol. XLVIII

Dubinsky, E. (2000). Using a Theory of Learning in College Mathematics Course. Newsletter No. 12 http:/www.bham.ac.uk/ctimath/talum12.htm or http:/www.telri.ac.uk/

Dubinsky, E; & Yiparaki, Olga. (2001). Predicate Calculus and the Mathematical Thinking of Student . http://www.cs.cornell.edu/info/people/gies/symposium/dubinsky.htm

Glaser, B. G. & Strauss, A. L. (1967). Discovery of Grounded Theory: Strategies for Qualitative Research. Chicago: Aldine

Hunt, R. Reed & Ellis, Henry C. (1999). Fundamental of Cognitive Psychology. Sixth Edition. Boston:McGraw-Hill College.

Piaget, J, & Garcia, R. (1989). Psychologies and the History of Science http://www.piaget.org/

Solso, R.L. (1995). Cognitive Psychology. Boston: Allyn and Bacon.

Widada, W., dan Herawaty, D. (2005). Studi tentang Dekomposisi Genetik Peserta didik dalam Mempelajari Teori Graph (berbasis Triad Level). Laporan Penelitian Fundamental 2005.

Widada, W. (2001). Struktur Representasi Pengetahuan peserta didik tentang Grafik Fungsi dan Deret Tak hingga. Artikel disajikan dalam Seminar Nasional Matematika II FMIPA UNNES Semarang 27 Agustus 2001.

Widada, W. (2002a). Skema peserta didik tentang Sketsa Grafik Fungsi. Artikel dimuat dalam Jurnal Pendidikan Matematika dan Sains (JPMS) tahun VII No. 3, dan disajikan pada Seminar Nasional Hasil Penelitian MIPA yang Diselenggarakan oleh FMIPA UNY di Hotel Ambarukmo 28 Oktober 2002.

Widada, W. (2002b). Teori APOS sebagai Suatu Alat Analisis Dekomposisi Genetik terhadap Perkembangan Konsep Matematika Seseorang. Artikel dimuat dalam Journal of Indonesian Mathematicel Society (MIHMI) Vol. 8 No. 3, setelah disajikan dalam pertemuan ilmiah peserta didik S3 Matematika dan Pendidikan Matematika se Indonesia & The Indonesian Applied Mathematical Society in The netherlands (IAMS-N) di P4M ITB 4-5 Juli 2002.

Widada, W. (2002c). Model Interaksi Skema peserta didik tentang Permasalahan Grafik Fungsi pada Kalkulus. Artikel dimuat dalam Jurnal Matematika atau Pembelajarannya UM Malang Tahun VIII Juli 2002, dan disajikan pada Konferensi Nasional Matematika XI di UM Malang, 22-25 Juli 2002

Widada, W. (2002d). Sikel Pengajaran ACE: Membantu peserta didik dalam proses mengkonstruksi matematika. Artikel disajikan dalam Seminar Nasional MIPA UM Malang berkerjasama dengan Japan International Cooperation Agency (IMSTEP-JICA) 5 Agustus 2002.

Widada, W. (2002e). Model Interaksi dari Beberapa Objek Matematika. Artikel dimuat dalam Jurnal Pendidikan Dasar dan Menengah Gentengkali. 4 (1). 7-12

Widada, W. (2003). Interaksi Skema Peserta didik Model Baru tentang Permasalahan Grafik Fungsi pada Kalkulus. Laporan Penelitian Mandiri:Tidak dipublikasikan

Widada, W. (2004). Struktur Representasi Pengetahuan Peserta didik tentang Deret Tak hingga (berbasis Triad Level). Laporan Penelitian Mandiri:Tidak dipublikasikan

Widada, W. (2006a) Pidato Pengukuhan Guru Besar. Makalah Universitas Muhammadiyah Bengkulu: Tidak dipublikasikan

Widada, W. (2006b). Dekomposisi Genetik Peserta didik dalam Mempelajari Teori Graph. Artikel dimuat dalam Jurnal Ilmiah Multi Science Inspirasi. Monograph II tahun 2006

Widada, W. (2007). Pengembangan teori perkembangan skema (triad level) tentang Kalkulus pada mahasiswa matematika FKIP UMB. Jurnal Inspirasi. 5(1).

Widada, W. (2009). Pengembangan Teori dan Model Pembelajaran Matematika Berbasis Level Triad++ untuk Peserta didik Analisis Real (Studi di FKIP Universitas Bengkulu). Ditjen Dikti: Laporan Hasil Penelitian Hibah Kompetensi.

Widada, W. (2010). Pengembangan Lanjutan Teori dan Model Pembelajaran Teori Graph Berbasis Extended Level Triad++ untuk Peserta didik FKIP Universitas Bengkulu. Ditjen Dikti: Laporan Hasil Penelitian Hibah Kompetensi.

Widada, W. (2015). The Existence of Students in Trans Extended Cognitive Development on Learning of Graph Theory. Jurnal Math Educator Nusantara. 1(1), 1-20

Widada, W. dan Herawaty, D. (2016). Dekomposisi Genetik Peserta didik Pendidikan Matematika Ditinjau Berdasarkan Model Struktur Representasi Pengetahuan (SRP) dan Kemampuan Abstraksi (KA) tentang Konsep-konsep Analisis Real. Artikel dimuat dalam Prosiding Jambi International Seminar on Education. 3-5 April 2016.

Widada, W. (2016a) Kemampuan Abstraksi Peserta didik Pendidikan Matematika dalam Memahami Konsep-Konsep Analisis Real ditinjau berdasarkan Struktur Kognitif. Artikel dimuat dalam Prosiding SEMIRATA MIPA BKS Barat di Unsri 22-24 Mei 2016.

Widada, W. (2016b). Profile of Cognitive Structure of Students in Understanding the Concept of Real Analysis. Infinity, 5(2), 83-98.

Widada, W. (2017). The Effects of the Extended Triad Model and Cognitive Style on the Abilities of Mathematical Representation and Proving of Theorem. Article Presented, Universitas Negeri Malang: ICoMSE (International Conference on Mathematics, Science, and Education), 29-30 Agustus 2017.




DOI: https://doi.org/10.24815/jdm.v4i2.9216

Refbacks

  • There are currently no refbacks.




Jurnal Didaktik Matematika

ISSN 2355 – 4185 (print) | 2548 – 8546 (online)
Organized by Program Studi Magister Pendidikan Matematika, FKIP Unsyiah
Published by Universitas Syiah Kuala
Website : http://jurnal.unsyiah.ac.id/DM/
Email     : didaktik.matematika@gmail.com  or  cc to rini.sulastri89@gmail.com

Creative Commons License

Jurnal Didaktik Matematika Published by Universitas Syiah Kuala is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://jurnal.unsyiah.ac.id/DM