Ripeness Level Classification of Oil Palm Fresh Fruit Bunch Using Laser Induced Fluorescence Imaging

Hefniati Ishak, Minarni Shiddiq, Ramma Hayu Fitra, Nadia Zakyyah Yasmin

Abstract


Tingkat Kematangan Tandan Buah Segar (TBS) kelapa Sawit merupakan faktor penentu kualitas crude palm oil (CPO) yang dihasilkan pabrik kelapa sawit. Metode penyortiran TBS setelah panen atau sebelum memasuki proses perebusan pada umumnya dilakukan secara manual mengandalkan penglihatan dan pengalaman. Metode ini rentan kesalahan dan bersifat subyektif. Metode pencitraan berkembang sangat cepat karena kemajuan dalam bidang komputer dan teknik pengolahan citra, khususnya untuk sistem sortasi dan grading. Penelitian ini mengunakan metode pencitraan fluoresensi yang diinduksi laser untuk mengakses dan mengklasifikasi tingkat kematangan TBS kelapa sawit. Hubungan antara tingkat keabuan dan tingkat kekerasan buah TBS dianalisa. Sampel terdiri dari 27 TBS kelapa sawit varietas Tenera. Tingkat kematangan dikategorikan oleh pemanen berpengalaman menjadi mentah, matang, dan lewat matang. Tiga bagian TBS yaitu pangkal, tengah, dan ujung disinari laser dioda 640 nm mengenai 5 buah pada tiap bagian. Kemudian citra direkam mengunakan kamera CMOS monokrom. Selanjutnya 15 buah tersebut diuji tingkat kekerasan mengunakan penetrometer. Klasifikasi tingkat kematangan dilakukan mengunakan K-mean clustering. Hasil penelitian memperlihatkan bahwa metode pencitraan fluoresensi yang diinduksi laser potensial digunakan dalam mengklasifikasi tingkat kematangan TBS. Tingkat kekerasan buah berkorelasi positif terhadap tingkat keabuan citra TBS. K-mean clustering memperlihatkan tiga kelompok tingkat kematangan yang terdiri dari 0, 1 dan 2.

 

Ripeness levels of oil palm fresh fruit bunches (FFB) are the main factor to determine the quality of crude palm oil (CPO) produced by Oil Palm Mill. Sorting oil palm FFB after harvest or before entering the boiling process is generally done manually which relies on human vision and experience. Imaging methods has developed vastly due to advances in computer and image processing techniques. This study used a laser-induced fluorescence imaging to access and classify the ripeness levels of oil palm FFB of Tenera variety. The relationship between gray value and the level of firmness of FFB fruit was analyzed. The samples consisted of 27 oil palm FFB categorized  by experienced harvester as unripe, ripe, and overripe. Laser light was shone on equatorial part of each FFB such that 5 fruitlets were covered by laser light, then the image of the front part was acquire using a monochrome CMOS camera. The step was repeated for basil and apical parts in sequent. All 15 fruitlets were testing for the firmness level using a penetrometer. Ripeness level classification was done using K-mean clustering. The results showed that the laser-induced fluorescence imaging method are potential to be used to determine the ripeness levels of FFB. The fruit firmness is positively correlated with the gray value of the image of FFB. K-mean clustering shows three ripeness centroid of 0, 1 and 2 .

 

Keyword: Fluorecence Imaging, Oil Palm, Fresh Fruit Bunches, Firmness, Laser Induced Fluorecence


Full Text:

PDF

References


Abbot, J. A. 1998. Quality measurement of fruits and vegetables. Postharvest Biology and Technology Journal. 15: 207-225

Abbasi, H., M. Nazeri, A. Balooch, S. A. Mireei. 2014. LIF Spectroscopy of Fruits: Study of Excitation Wavelength Independence. The third Iranian Conference on Engineering Electromagnetic (ICEEM 2014), Dec. 3-4

Alfatni, M.S.M.; Shariff, A.R.M.; Shafri, H.Z.M.; Saaed, O.M.B.; Eshanta, O.M. 2008. Oil palm fruit bunch grading system using red, green and blue digital number. J. Appl. Sci. 8:1444–1452

Bensaeed, O M., Shariff, A M., Mahmud, A B., Shafri, H., Alfatni, M. 2014. Oil palm fruit grading using a hyperspectral device and machine learning algorithm. IOPconference earth and enviromental science. Doi : 10.1088/1755-1315

Bodria., L., M. Fiala, R. Guidetti, R. Oberti. 2004. Optical Techniques to Estimate The Ripeness of Red-Pigmented Fruits. American Society of Agricultural Engineers ISSN 0001-2351, vol 47 (3): 815-820

Chopra, S., A.R.P Kingsly, A.R.P., Jha, S.N. 2006. Non-Destructive Determination of Firmness And Yellowness Of Mango During Growth And Storage Using Visual Spectroscopy. Biosystems Engineering. 94(3): 397-402

Fadilah, N., J. Mohamad-Saleh, Z.A. Halim, H. Ibrahim, S.S. Syed Ali. 2012. Intelligent ColorVision System for Ripeness Clasification of Oil Palm Fresh Fruit Bunch. Sensor. 12: 14179-14195

Girish V, A. Vijayalakshmi. 2004. Affordable image analysis using NIH Image/ImageJ. Indian J Cancer. 41:47

Hazir, M. M. H., Shariff, A. R. M., Amiruddin, M. A. 2012. Determination of oil palm fresh fruit bunch ripeness-Based on flavonoid and anthocyanin content. Journal Industrial Crops and Products. 36: 466-475

Kodagali, J. A, S. Balaji. 2012. Computer Vision and Image Analysis based Techniques for Automatic Characterization of Fruits – a Review. International Journal of Computer Applications. 50 (6): 0975 – 8887

Lakshmi, S., Pandey, A.K., Ravu, N., Chauhan. O. P. Natarajan, G., Sharma, R. K. 2017. Non-destructive quality monitoring of fresh fruits and vegetables. Defence life science journal. 2 : 103-110

Laren, Mc., 1986, The Colour Science of Dyes and pigments, second edition, Adam HilgerLtd, Bristol

Lino, A. C. L., Sanches, J. Dal Fabbro, I. M. 2008. Image processing techniques for lemons and tomatoes classification, Bragantia. 67(3): 785-789

Liu, M., S. Hu, H. W. Lin, E. Guo. 2007. Hyperspectral laser induced fluorescence imaging for nondestruktif assesing soluble solids content of orange. Computer and Computing Technologies in Agriculture.1: 51-59

Mahendran,R, G.C. Jayashree, K. Alagusundaram. 2012. Application of Computer Vision Technique on Sorting and Grading of Fruits and Vegetables. J Food Process Technol S1-001. Doi : 10.4172/2157-7110

Razali, M. H., A. Somad., M. A. Halim., S. Roslan. 2012. A Review on Crop Plant Production and Ripeness Forecasting. International Journal of Agriculture and Crop Sciences. 4 (2): 54-36

Sunilkumar, K and D. S. Sparjan Babu, 2013. Surface color based prediction of oil content in oil palm (Elaeis guineensis Jacq.) fresh fruit bunch,” African Journal of Agricultural Research. 8: 564-569




DOI: https://doi.org/10.24815/jacps.v8i3.14139

Refbacks

  • There are currently no refbacks.


  | eISSN 2355-8229 | email: jacps@unsyiah.ac.id | http://www.jurnal.unsyiah.ac.id/JAcPS | Published by Aceh Physics Society