The Production and Characterization of Activated Carbon Electrodes from Pineapple Leaf Fibers for Supercapacitor Application

Agustino Agustino, Rakhmawati Farma, Erman Taer


Elektroda karbon aktif berbasis serat daun nanas (SDN) telah berhasil diproduksi dengan proses tiga langkah berikut ini, yaitu: (i) aktivasi kimia, (ii) karbonisasi, dan (iii) aktivasi fisika. Aktivasi kimia dilakukan dengan menggunakan agen pengaktif KOH dengan konsetrasi 0,3 M. Karbonisasi dilakukan dalam lingkungan gas N2 pada temperatur 600oC dan diikuti oleh aktivasi fisika pada temperatur 850oC menggunakan gas CO2 selama 2,5 jam. Luas permukaan spesifik elektroda 512,211 m2×g-1 dengan volume total pori sebesar 0,093 cm3×g–1, dan jari-jari pori rata-rata 1,199 nm. Morfologi permukaan elektroda karbon aktif menunjukkan adanya serat karbon dengan diameter serat dalam kisaran 101 - 185 nm dan memliki kandungan karbon dengan massa atomik sebesar 84,33%. Elektroda karbon aktif memiliki struktur amorf, yang ditunjukkan oleh dua puncak difraksi yang lebar pada sudut hamburan 24,64 dan 43,77o yang bersesuaian dengan bidang (002) dan (100). Kapasitansi spesifik, energi spesifik dan daya spesifik sel superkapasitor yang dihasilkan masing-masing sebesar 110 F×g-1, 15,28 Wh×kg-1 dan 36,69 W×kg-1.


Pineapple leaf fiber (PALF) based activated carbon electrode has been successfully produced using three-step process, i.e. (i) chemical activation, (ii) carbonization, and (iii) physical activation. The chemical activation was carried out using KOH activating agent with a concentration of 0.3 M. The carbonization process is conducted out in N2 gas environment at 600oC and followed by physical activation at a temperature of 850oC by using CO2 gas for 2.5 h. The specific surface area of the electrode is 512.211 m2×g-1 with a total pore volume of 0.093 cm3×g-1, and average pore radius of 1.199 nm. The surface morphology of the electrode shown the carbon fibers with diameter in the range of 101 - 185 nm and carbon content with 84.33% of atomic mass. The activated carbon electrode has an amorphous structure, which is shown by two wide diffraction peaks at scattering angles of 24.64 and 43.77o which correspond to the plane (002) and (100), respectively. The specific capacitance, energy and power of the electrode are 110 F×g-1, 15.28 Wh×kg-1 and 36.69 W×kg-1, respectively.

Keywords: Serat daun nanas, Kalium hidroksida, Elektroda karbon aktif, Kapasitansi spesifik, Superkapasitor


Full Text:



Awitdrus., Deraman, M., Talib, I.A., Farma, Rakhmawati., Nor, N.S.M., Ishak, M.M., Dolah, B.N.M. 2016. Cyclic Voltammetry of Binderless Activated Carbon Monoliths based supercapacitor from Mixtures of Pre-carbonized of Fibers of Empty Fruit Bunches and Green Petroleum Coke. Knowledge Engineering. Vol. 2016: 1-8.

Biener, J., Stadermann, M., Suss, M., Worsley, M. A., Biener, M. M., Rose, K. A., and Baumann, T.F. 2011. Advanced Carbon Aerogels for Energy Applications. Energy and Environmental Science. Vol. 4: 656–667

Biswal, M., Banerjee, A., Deo, M. and Ogale, S. 2013. From Dead Leaves to High Energy Density Supercapacitors. Energy Environmental Science, Vol. 6: 1249-1260

Dai, C.C., Wan, J.F., Geng, W.D., Song, S.J., Ma, F.W., and Shao, J.Q. 2017. KOH Direct Treatment of Kombucha and in Situ Activation to Prepare Hierarchical Porous Carbon for High-Performance Supercapacitor Electrodes. Journal of Solid State Electrochemistry. Vol. 21: 2929-2938.

Dai, C., Wan, J., Juan, Y., Qu, S., Jin, T., Ma, F., and Shao, J. 2018. H3PO4 Solution Hydrothermal Carbonization Combined with KOH Activation to Prepare Argy Wormwood-Based Porous Carbon for High-Performance Supercapacitors. Applied Surface Science. Vol. 444: 105-117

Farma, R., Deraman, M., Awitdrus., Talib, I.A., Omar, R., Manjunatha, J.G., Ishak, M.M., Basri, N.H., and Dolah, B.N.M. 2013. Physical and Electrochemical Properties of Supercapacitor Electrodes Derived from Carbon Nanotube and Biomass Carbon. International Journal Electrochemical Science. Vol. 8: 257-273

González, A., Goikolea, E., Barrena, J.A., and Mysyk, R. 2016. Review on Supercapacitors: Technologies and Materials, Renewable and Sustainable Energy Reviews. Vol. 58: 1189–1206

Hui, P., Li, J., and Feng, Y.P. 2010. Carbon Nanotubes for Supercapacitor, Nanoscale Research Letter. Vol. 5: 654-668

Liang, Y., Cai, L., Chen, L., Lin, X., Fu, R., Zhang, M., and Wu, D. 2015. Silica Nanonetwork Confined in Nitrogen-Doped Ordered Mesoporous Carbon Framework for High-Performance Lithium-Ion Battery Anodes. Nanoscale. Vol. 7: 3971–3975

Liu, H.Y., Wang, K.P. and Teng, H. 2005. A Simplified Preparation of Mesoporous Carbon and The Examination of The Carbon Accessibility for Electric Double Layer Formation. Carbon. Vol. 43: 55-566

Luo, J., Jang, H. D., and Huang, J. 2013. Effect of Sheet Morphology on The Scalability of Graphene-Based Ultracapacitors. ACS Nano. Vol. 7: 1464–1471

Mao N., Wang H., Sui Y., Cui Y., Pokrzywinski J., Shi J., Liu W., Chen S., Wang X., Mitlin D. 2017. Extremely High-Rate Aqueous Supercapacitor Fabricated Using Doped Carbon Nanoflakes with Large Surface Area and Mesopores at Near-Commercial Mass Loading. Nano Research. Vol. 10: 1767–1783

Meng, Y., Wang, K., Zhang, Y., and Wei, Z. 2013. Hierarchical Porous Graphene/Polyaniline Composite Film with Superior Rate Performance for Flexible Supercapacitors. Advanced Materials. Vol. 25: 6985-6990

Niu, Z., Dong, H., Zhu, B., Li, J., Hng, H.H., and Zhou, W. 2013. Highly Stretchable, Integrated Supercapacitors Based on Single-Walled Carbon Nanotube Films with Continuous Reticulate Architecture. Advanced Materials. Vol. 25: 1058-1064

Qie, L., Chen, W.M., Xu, H.H., Xiong, X.Q., Jiang, Y. 2013. Synthesis of Functionalized 3D Hierarchical Porous Carbon for High-Performance Supercapacitors. Energy and Environmental Science. Vol. 6: 2497-2504

Raccichini, R., Varzi, A., Passerini, S., and Scrosati, B. 2015. The Role of Graphene for Electrochemical Energy Storage. Nature Materials. Vol. 14: 271-279

Sevilla, M., and Fuertes, A.B. 2014. Direct Synthesis of Highly Porous Interconnected Carbon Nanosheets and Their Application as High-Performance Supercapacitors. ACS Nano. Vol. 8: 5069-5078

Shu, Y., Bai, Q., Fu, G., Xiong, Q., Li, C., Shen, Y., Uyama, H., and Ding, H. 2020. Hierarchical Porous Carbons from Polysaccharides Carboxymethyl Cellulose, Bacterial Cellulose, and Citric Acid for Supercapacitor. Carbohydrate Polymers. Vol. 227: 115346

Simon, P., and Gogotsi, Y. 2008. Material for Electrochemical Capacitors. Nature Materials. Vol. 7: 845-854

Taer, E., Deraman, M., Talib, I.A., Umar, A.A., Oyama, M., and Yunus, R.M. 2010. Physical, Electrochemical and Supercapacitive Properties of Activated Carbon Pellets from Pre-Carbonized Rubber Wood Sawdust by CO2 Activation. Current Applied Physics. Vol. 10: 1071-1075

Taer, E., Taslim, R., Mustika, W.S., Kurniasih, B., Agustino, Afrianda, A., and Apriwandi. 2018b. Production of an Activated Carbon from A Banana Stem and its Application as Electrode Materials for Supercapacitors. International Journal of Electrochemical Science. Vol. 13: 8428–8439

Taer, E., Zulkifli., Awitdrus., Taslim, R., Agustino, A., and Apriwandi. 2018c. Synthesis of Carbon Nanofibers from Cellulose Water Chestnut Biomass for Supercapacitor Applications. Current Topics in Electrochemistry. Vol. 20: 39-45

Taer, E., Susanti, Y., Awitdrus., Sugianto., Taslim, R., Setiadi, R.N., Bahri, S., Agustino., Dewi, P., and Kurniasih, B. 2018d. The Effect of CO2 Activation Temperature on the Physical and Electrochemical Properties of Activated Carbon Monolith from Banana Stem Waste. AIP Conference Proceedings.Vol. 1927: 030016-1 - 030016-5

Taer, E., Dewi, P., Sugianto., Syech, R., Taslim, R., Salomo., Susanti, Y., Purnama, A., Apriwandi., Agustino., and Setiadi, R.N. 2018e. The Synthesis of Carbon Electrode Supercapacitor from Durian Shell Based on Variations in the Activation Time. AIP Conference Proceedings.Vol. 1927 030026-1 - 030026-6

Taer, E., Apriwandi, A., Ningsih, Y.S., Taslim, R., and Agustino. 2019a. Preparation of Activated Carbon Electrode from Pineapple Crown Waste for Supercapacitor Application. International Journal of Electrochemical Science. Vol. 14: 2462–2475

Taer, E., Handayani, R., Apriwandi., Taslim, R., Awitdrus., Amri, A., Agustino., and Iwantono, I. 2019b. The Synthesis of Bridging Carbon Particles with Carbon Nanotubes from Areca catechu Husk Waste as Supercapacitor Electrodes. International Journal of Electrochemical Science. Vol. 14: 9436–9448

Taslim, R., Dewi, T.R., Taer, E., Apriwandi, A., Agustino, A., and Setiadi, R.N. 2018a. Effect of Physical Activation Time on the Preparation of Carbon Electrodes from Pineapple Crown Waste for Supercapacitor Application. Journal of Physics: Conference Series. Vol. 1120: 012084-1 – 012084-7

Taslim, R., Agustino, A., and Taer, E. 2018b. Naturalcarbon-metal Composite for Supercapacitor Application. Journal of Physics: Conference Series. Vol. 1120: 012008-1 – 012008-10

Yang, C., and Li, D. 2015. Flexible and Foldable Supercapacitor Electrodes from the Porous 3D Network of Cellulose Nanofibers, Carbon Nanotubes and Polyaniline. Materials Letters. Vol. 155: 78–81.

Wen, L., Li, F., and Cheng, H.-M. 2016. Review: Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices. Advanced Materials. Vol. 28: 4306-4337

Xie, Y., and Feng, X. 2014. Electrochemical Flexible Supercapacitor Based on Manganese Dioxide-Titanium Nitride Nanotube Hybrid. Electrochimica Acta. Vol. 120: 273-283.

Yang, Q.-Q., Gao, L.-F., Zhu, Z.-Y., Hu, C.-X., Huang, Z.-P., Liu, R.-T., Wang, Q., Gao, F., and Zhang, H.-L., 2018. Confinement Effect of Natural Hollow Fibers Enhances Flexible Supercapacitor Electrode Performance, Electrochimica Acta. Vol. 260: 204-211

Zhao, Q., Wang, X. Y., Xia, H., Liu, J., Wang, H., Gao, J., Zhang, Y. W., Liu, J., Zhou, H. Y., Li, X. L., Zhang, S. Y. and Wang, X.Y. 2015. Design, Preparation and Performance of Novel Three-Dimensional Hierarchically Porous Carbon for Supercapacitors. Electrochimica Acta. Vol. 173: 566-574

Zulkifli, Awitdrus, dan Taer, E. 2018. Studi Awal Pemanfaatan Purun Tikus sebagai Elektroda Superkapasitor Menggunakan Aktivasi Uap Air. Journal of Aceh Physics Society. Vol. 7, No. 1: 30-34



  • There are currently no refbacks.

  | eISSN 2355-8229 | email: | |