Effect of KOH Activator on the Performance of Activated Carbon from Oil Palm Kernel Shell as Supercapacitor Electrode Material

Yola Azli Perdana, Rahma Joni, Emriadi Emriadi, Hemansyah Aziz


Karbon aktif dari cangkang kelapa sawit sebagai bahan elektroda superkapasitor telah diteliti. Superkapasitor dirangkai dengan metoda plat/sandwich yang dipisahkan oleh separator. Untuk mendapatkan nilai kapasitansi yang besar dilakukan variasi jumlah aktivator terhadap karbon menggunakan aktivator KOH. Sifat fisikokimia dari karbon aktif diteliti dengan melakukan karakterisasi menggunakan XRD (X-Ray Diffraction), SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-Ray) dan SAA (Surface Area Analyzer) dan sifat elektrokimianya diteliti dengan pengukuran CV (Cyclic Voltammetry). Karbon aktif dengan perbandingan 1:5 memiliki luas permukaan yang paling besar yaitu 793,326 m2/g dan nilai kapasitansi spesifik tertinggi yaitu 99,151 F/g.


The activated carbon from oil palm kernel shell as an electrode material for supercapacitors has been investigated. The supercapasitor was assembled by plate/sandwich methods. Both electrodes were separated by using a separator. To increase the capacitancy value, variations in the number of activators on carbon were carried out using KOH activator. The physicochemical properties of activated carbon were investigated by characterizing using XRD (X-Ray Diffraction), SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-Ray) and SAA (Surface Area Analyzer) and the electrochemical properties were investigated by measuring CV (Cyclic Voltammetry). Activated carbon with a ratio of 1:5 has the largest surface area of 793,326 m2/g and the highest specific capacitance value is 99,151 F/g.

Keywords: activated carbon, supercapasitor, activator, surface area, specific capacitance

Full Text:



Abioye, A. M., dan Nasir, F. 2015. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors : A review. Renewable and Sustainable Energy Reviews 52 1282–1293. https://doi.org/10.1016/j.rser.2015.07.129

Aziz, H., Tetra, O., N., Syukri, Alif, A., Ramadhan, W. 2017. Utilization of porous carbon from waste palm kernel shells on carbon paper as a supercapacitors electrode material. IOP Conf. Series: Earth and Environmental Science 65 012053.


Chen, T., and Dai, L. 2013. Carbon nanomaterials for high- performance supercapacitors. Biochemical Pharmacology, 16(7–8) 272–280. https://doi.org/10.1016/j.mattod.2013.07.002

Gualous, H., Louahlia-gualous, H., Gallay, R., & Miraoui, A. 2009. Supercapacitor Thermal Modeling and Characterization in Transient State for Industrial Applications. IEEE Transactions on Industry Applications 45(3), 1035–1044.

Harahap, H. H., Malik, U., Dewi, R., Matematika, F., Alam, P., Riau, U., & Bina, K. (n.d.). Pembuatan karbon aktif dari cangkang kelapa sawit dengan menggunakan H2O sebagai aktivator untuk menganalisis proksimat, bilangan iodine dan rendemen. Jom Fmipa 1(2), 48–54.

Hou, J., Cao, C., Idrees, F., & Ma, X. 2015. Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes. ACS Nano 9 3 2556-2564

Kamikuri, N., Hamasuna, Y., Tashima, D., Fukuma, M., Kumagai, S., John, D., & Madden, W. (2014). Low-cost Activated Carbon Materials Produced from Used Coffee Grounds for Electric Double-layer Capacitors. Intern. J. Eng. Sci. Innovative Tech. 3(4), 492–501.

Kwiatkowski, M., & Broniek, E. (2017). An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical. Colloids and Surfaces A: Physicochemical and Engineering Aspects 529


Kwon, S. H., Lee, E., Kim, B. S., Kim, S. G., Lee, B. J., Kim, M. S., & Jung, J. C. (2014). Activated carbon aerogel as electrode material for coin-type EDLC cell in organic electrolyte. Current Applied Physics 14(4), 603–607. https://doi.org/10.1016/j.cap.2014.02.010

Marsh, H., & Reinoso, F. R. (2006). Activated Carbon. Retrieved from http://www.123library.org/book_details/?id=37743

Pagketanang, T., Artnaseaw, A., & Wongwicha, P. (2015). Microporous Activated Carbon from KOH-Activation of Rubber Seed-Shells for Application in Capacitor Electrode. Energy Procedia 79.


Peng, C., Yan, X., Wang, R., Lang, J., Ou, Y., & Xue, Q. (2013). Electrochimica Acta Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochimica Acta 87, 401–408.


Rawal, S., Joshi, B., & Kumar, Y. (2018). Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors. Journal of Energy Storage 20 418–426.


Reviews, S. E. (2018). Activated carbon from lignocellulosics precursors : A review of the synthesis methods , characterization techniques and applications. Renewable and Sustainable Energy Reviews 82 1393–1414.


Sun, F., Gao, J., Liu, X., Pi, X., Yang, Y., & Wu, S. (2016). Applied Surface Science Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials. Applied Surface Science 387, 857–863. https://doi.org/10.1016/j.apsusc.2016.06.176

Taer, E., Afrianda, A., Taslim, R., Krisman, Minarni, Agustino, A., Apriwandi, A., Malik, U. (2018).The physical and electrochemical properties of activated carbon electrode made from Terminalia Catappa leaf (TCL) for supercapacitor cell application. IOP Conf. Series: Journal of Physics: Conf. Series 1120, 012007. https://doi.org/10.1088/1742-6596/1120/1/012094.

Zheng, K., Li, Y., Zhu, M., Yu, X., Zhang, M., & Shi, L. (2017). The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors. J. Power Sources 366, 270–277.


DOI: https://doi.org/10.24815/jacps.v9i1.15195


  • There are currently no refbacks.

  | eISSN 2355-8229 | email: jacps@unsyiah.ac.id | http://www.jurnal.unsyiah.ac.id/JAcPS |