Journal of Data Analysis

  • Home
  • About
  • Login
  • Register
  • Categories
  • Search
  • Current
  • Archives
  • Announcements
  • PUBLICATION ETHICS
Home > Volume 3, Number 2, December 2020 > Ramadhani
User
 
Template of Article
Example of Article
Certificate of Reviewing
Open Journal Systems
PRINCIPAL CONTACT
Asep Rusyana
Department of Statistics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University
Jalan Syech Abdurrauf No.3, Kopelma Darussalam, Banda Aceh 23111, Aceh, Indonesia
Email: jda@unsyiah.ac.id
Mobile Phone: +6281360635965

Link
  • Department of Statistics
  • Department of Mathematics
  • Forstat
  • Syiah Kuala University
  • ISSN Online
  • Google Scholar
  • Garuda
  • Crossref
  • IOS
  • WorldCat
  • BASE
  • ISJD
  • Microsoft Academic
  • DOAJ
  • Arjuna Akreditasi Jurnal Nasional
  • Sinta
  • Scopus
  • Web of Science

 Picture Link:

 

 

 

Journal Help

Identifikasi Faktor-Faktor yang Memengaruhi Angka Harapan Hidup di Sumatera Tahun 2018 Menggunakan Analisis Regresi Spasial Pendekatan Area

Evi Ramadhani, Nany Salwa, Medina Suha Mazaya

Abstract

Angka Harapan Hidup (AHH) merupakan perkiraan usia hidup yang dapat dicapai oleh penduduk pada suatu wilayah. AHH merupakan salah satu indikator derajat kesehatan masyarakat suatu negara yang digunakan sebagai tolok ukur dalam mengevaluasi kinerja pemerintah di bidang kesehatan, lingkungan, dan sosial ekonomi. Salah satu faktor yang memengaruhi pencapain AHH adalah lokasi antar wilayah, sehingga dalam melakukan analisis perlu mempertimbangkan unsur lokasi di dalamnya. Penelitian ini bertujuan mengidentifikasi faktor-faktor yang berpengaruh signifikan terhadap AHH di 154 kabupaten/kota Pulau Sumatera dengan analisis regresi spasial pendekatan area dan mendapatkan model regresi spasial terbaik pada pemodelan AHH Pulau Sumatera. Regresi spasial merupakan analisis statistika untuk memodelkan dan mengevaluasi hubungan antara variabel dependen dan independen dengan memperhatikan keterkaitan unsur lokasi. Model regresi spasial pendekatan area SAR, SEM, dan SARMA dikaji dengan melibatkan 16 variabel independen terpilih dari 17 variabel independen yang teridentifikasi. Data bersumber dari BPS dan IPKM tahun 2018. Hasil penelitian menunjukkan, bahwa model SEM merupakan model regresi spasial pendekatan area terbaik dengan nilai  sebesar 58,23% dan nilai AIC sebesar 600,27. Variabel yang berpengaruh signifikan memengaruhi AHH Pulau Sumatera secara spasial, diantaranya yaitu proporsi balita gizi buruk dan kurang (X1), proporsi desa dengan kecukupan jumlah bidan per 1.000 penduduk (X7), proporsi rumah tangga dengan akses sanitasi (X9), persentase penduduk miskin (X13), angka buta huruf penduduk usia 15 tahun ke atas (X14), dan rata-rata lama sekolah (X15).

Life expectancy is an estimate of the life span that can be achieved by residents in a region. Life expectancy is one of the indicators of a country’s public health degree that is used as a benchmark in evaluating government performance in the health, environmental, and socioeconomic fields. One of the factors that influence the achievement of life expectancy is the location between regions, so in conducting the analysis necessary to consider the element of location. This study aims to identify factors that have a significant effect on life expectancy in 154 districts/cities of Sumatra Island with spatial regression analysis of the area approach and to obtain the best model of spatial regression in the life expectancy modeling in Sumatra Island. Spatial regression is a statistical analysis to model and evaluate relationships between dependent variables and independent variables by paying attention to interrelations of location elements. The spatial regression model approaches the area of SAR, SEM, and SARMA reviewed with 16 independent variables selected from 17 identified independent variables. Data sourced from BPS and IPKM in 2018. The results show that the SEM model is the best spatial regression model for the area approach with a  value of 58.23% and an AIC value of 600.27. In term of spatial, variables that have a significant effect affect fife expectancy in Sumatra Island is the proportion of malnourished and undernourished toddlers (X1), the proportion of villages with the number of adequate of midwives per1,000 inhabitants (X7), the proportion of households with access to sanitation (X9), the percentage of population live in poverty (X13), the illiteracy rate of the population aged 15 years and over (X14), and the average length of schooling (X15).

 Keywords

Life Expectancy; Spatial Regression; Sumatera Island; Spatial Error Model

 Full Text:

PDF (Bahasa Indonesia)

References

Badan Pusat Statistik. (2020). Angka Harapan Hidup. Diakses pada 20 Desember 2020, dari https://sirusa.bps.go.id/sirusa/index.php/indikator/48.

Halicioglu, F. (2011). Modeling Life Expectancy in Turkey, Economic Modeling. Jurnal Publikasi Universitas Yeditepe, 28(5), 2075–2082.

Population Reference Bureau. (2020). 2020 World Population Data Sheet. Washington DC: Population Reference Bureau Inc.

Kementerian Kesehatan RI. (2019). Profil Kesehatan Indonesia Tahun 2018. Jakarta: Balitbangkes.

Ekwarso, E. & Sari, L. (2010). Penyerasian Kebijakan Kependudukan di Provinsi Riau. Jurnal Ekonomi, 18(02), 36–49. https://doi.org/http://dx.doi.org/10.31258/je.18.02.p.%25p.

Badan Pusat Statistik. (2019). Ekonomi Indonesia Triwulan IV-2018 Tumbuh 5,17 Persen. Diakses pada 15 Desember 2020, dari https://www.bps.go.id/pressrelease/2019/02/06/1619/ekonomi-indonesia-2018-tumbuh-5-17-persen.html.

Badan Pusat Statistik. (2018). Statistik Indonesia Tahun 2018. Jakarta: Badan Pusat Statistik RI.

Walpole, R. E. (1992). Pengantar Statistika: Edisi ke-3. Terjemahan dari Introduction to Statistics 3rd ed, oleh Ir. Bambang Sumantri. Jakarta: PT Gramedia Pustaka Utama.

Draper, N. R., & Smith, H. (1992). Applied Regression Analysis (2nd ed.). New York: John Wiley and Sons Inc.

LeSage, J. P., & Pace, R. K. (2009). Introduction to Spatial Econometrics. Boca Raton: CRC Press.

Sarrias, M. (2020). Lecture 1: Introduction to Spatial Econometrics. Chile: Universidad de Talca.

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Academic Publishers.

Ward, M. D., & Gleditsch, K. S. (2008). Spatial Regression Model. United States: Sage Punlicaton Inc.

Anselin, L., & Bera, A. (1998). Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics. New York: Marcel Dekker.

Lee, J., & Wong, D. W. (2001). Statistical analysis with ArcView GIS. Canada: John Wiley & Sons Inc.

Arbia, G. (2006). Spatial Econometrics: Statistical Foundation Application to Regional Convergence. Berlin: Springer.

Nurhasanah, Rusyana, A. and Fitriana, AR. 2021. Binary logistic regression for identification of high school student interest in Banda Aceh city in continuing study at Universitas Syiah Kuala. J. Phys. 1882 012034.

Marzuki, Sofyan, H. dan Rusyana, A., 2010. Pendugaan Selang Kepercayaan Persentil Bootstrap Nonparametrik untuk Parameter Regresi. Statistika, 10(1), pp.13-23.

DOI: https://doi.org/10.24815/jda.v3i2.22350

Refbacks

  • There are currently no refbacks.

Partnership with: 

About The Authors

Evi Ramadhani
Jurusan Statistika, FMIPA, Universitas Syiah Kuala
Indonesia

Nany Salwa
Depertment of Statistics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University
Indonesia

Medina Suha Mazaya
Jurusan Statistika, FMIPA, Universitas Syiah Kuala
Indonesia

Indexed by:

 
Keywords ARIMA Forecasting Grup SL(2,3) Kesehatan Masyarakat Model Panel Spasial RWikiStat SARIMA SEM Structural Equation Model, Analisis Jalur, Status Gizi Remaja Subgrup Siklik Tabel Cayley Teorema Lagrange acoustic model android iuran normal kewajiban aktuaria metode pendanaan pensiun. neural network pembelajaran statistika projected unit credit speech recognition
Journal Content

Browse
  • By Issue
  • By Author
  • By Title
  • Other Journals
  • Categories
Since 27 March 2018
Visitors since 17 March 2018

Flag Counter

View My Stats

Font Size

 

 

 ISSN 2623-0658 (Print) 

 ISSN 2623-2286 (Online)

 

Creative Commons License
Journal of Data Analysis (JDA) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.