Recent Development and Application of TiO2 Nanotubes Photocatalytic Activity for Degradation Synthetic Dyes – A Review

Euis Uswatun Hasanah, Indar Kustiningsih, Slamet Slamet, Maughal Ahmed Ali Baig

Abstract


Synthetic dyes waste from textile industries, produce of the problematic pollutants in wastewater. TiO2 based photocatalysis are materials that exhibit excellent absorption behavior for organic compounds in wastewater due it properties including nontoxicity, high photocatalysis degradation ability, and chemical stabilities. However, several challenges exist regarding TiO2 nanotubes pure applications for dyes degradation such as poor affinity, high band gap energy, and difficulty of recovery and easy to recombination so it would decrease effectiveness of the photocatalysis process. Therefore, more design and optimization testing need to be conducted on the treatment conditions in order to reach higher removal efficiencies with lower costs. The modified physical properties by adding metal dopant, nonmetal, and sensitizer significantly enhanced photocatalysis activity. These parameters, which affect photocatalysis activity on degrade dyes waste pollutants, are discussed in the current review. As a result, the photocatalysis becomes more expected, and encourages to further research development.

 

 Keywords: TiO2, nanotubes, degradation, synthetic, dyes


Keywords


TiO2, nanotubes, degradation, synthetic, dyes;jurnal rekayasa kimia & lingkungan

Full Text:

PDF

References


Arlianti, L., & Nurlatifah, I. (2018). A Review : Degradasi Elektrokimia Zat Pewarna Golongan Azo. Jurnal Keilmuan Dan Aplikasi Teknik, 5(2), 23–29.

Basavarajappa, P. S., Patil, S. B., Ganganagappa, N., Reddy, K. R., Raghu, A. V., & Reddy, C. V. (2020). Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. International Journal of Hydrogen Energy, 45(13), 7764-7778.

Bjelajac, A., Djokić, V., Petrović, R., Bundaleski, N., Socol, G., Mihailescu, I. N., & Janaćković, D. (2017). Absorption boost of TiO2 nanotubes by doping with N and sensitization with CdS quantum dots. Ceramics International, 43(17), 15040-15046. https://doi.org/10.1016/j.ceramint.2017.08.029

Cai, J., Zhou, M., Xu, X., & Du, X. (2020). Stable boron and cobalt co-doped TiO2 nanotubes anode for efficient degradation of organic pollutants. Journal of hazardous materials, 396, 122723. https://doi.org/10.1016/j.jhazmat.2020.122723

Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., ... & Ruan, R. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 121725. https://doi.org/10.1016/j.jclepro.2020.121725

Cho, I. S., Choi, J., Zhang, K., Kim, S. J., Jeong, M. J., Cai, L., Park, T., Zheng, X., & Park, J. H. (2015). Highly Efficient Solar Water Splitting from Transferred TiO2 Nanotube Arrays. Nano Letters, 15(9),5709–5715. https://doi.org/10.1021/acs.nanolett.5b01406

Cui, X., Gu, H., Guan, Y., Ren, G., Ma, Z., Yin, Y., Liu, J., Cui, X., Yao, L., Yin, Y., Wang, D., Jin, G., Rong, S., Tong, L., Hou, J., & Li, M. (2015). Fabrication of AgInS2 nanoparticles sensitized TiO2 nanotube arrays and their photoelectrochemical properties. Solar Energy Materials and Solar Cells, 137, 101–106. https://doi.org/10.1016/j.solmat.2015.01.036

Devi, P., Das, U., & Dalai, A. K. (2016). Science of the Total Environment In-situ chemical oxidation : Principle and applications of peroxide and persulfate treatments in wastewater systems. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2016.07.032

Divyasri, Y. V., Reddy, N. L., Lee, K., Sakar, M., Rao, V. N., Venkatramu, V., ... & Reddy, N. C. G. (2021). Optimization of N doping in TiO2 nanotubes for the enhanced solar light mediated photocatalytic H2 production and dye degradation. Environmental Pollution, 269, 116170.

Dwipayana, et al. (2009). Pada Lumpur Hasil Pengolahan Limbah Cat Identification of Bacterial Diversity in Waste Recycling Paint Sludge. Program, 15(April), 1–12.

Elysabeth, T., Mulia, K., & Slamet. (2020). Effect of urea loading on the anodic synthesis of titania nanotube arrays photoanode to enhance photoelectrochemical performance. IOP Conference Series: Materials Science and Engineering,778(1).https://doi.org/10.1088/1757-899X/778/1/012063

Elysabeth, T., Slamet, & Sri Redjeki, A. (2019). Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application. IOP Conference Series: Materials Science and Engineering, 509(1). https://doi.org/10.1088/1757-899X/509/1/012144

Fu, Y., & Mo, A. (2018). A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications. Nanoscale Research Letters,13. https://doi.org/10.1186/s11671-018-2597-z

Ge, Ming-zheng, Cao, C., Huang, J., Li, S., Zhang, S., Deng, S., Li, Q., Zhang, K., & Lai, Y. (2016). Synthesis , modification , and photo / photoelectro ­ catalytic degradation applications of TiO2 nanotube arrays : a review. 5(1), 75–112. https://doi.org/10.1515/ntrev-2015-0049

Ge, Mingzheng, Li, Q., Cao, C., Huang, J., Li, S., Zhang, S., Chen, Z., Zhang, K., Al-Deyab, S. S., & Lai, Y. (2017). One-dimensional TiO2 Nanotube Photocatalysts for Solar Water Splitting. Advanced Science,4(1),1–31. https://doi.org/10.1002/advs.201600152

Ghazanfari, D., Bastani, D., & Mousavi, S. A. (2017). Preparation and characterization of poly (vinyl chloride) (PVC) based membrane for wastewater treatment. Journal of Water Process Engineering, 16,98–107. https://doi.org/10.1016/j.jwpe.2016.12.001

Guo, Q., Zhou, C., Ren, Z., & Yang, X. (2019). Single Molecule Photocatalysis on TiO2 Surfaces Focus Review. https://doi.org/10.1021/acs.chemrev.9b00226

Hajjaji, A., Jemai, S., Rebhi, A., Trabelsi, K., Gaidi, M., Alhazaa, A. N., & Bessais, B. (2020). Enhancement of photocatalytic and photoelectrochemical properties of TiO2 nanotubes sensitized by SILAR-Deposited PbS nanoparticles. Journal of Materiomics,6(1),62-69. https://doi.org/10.1016/j.jmat.2019.12.002

Hartanto, S., Christwardana, M., & Sijabat, B. F. (2019). Kombinasi Proses Elektrokoagulasi –*Oksidasi Lanjut Berbasis O3 / GAC pada Limbah Cair Industri^Batik Combination of Electrocoagulation - Advanced Oxidation Process Based on O3 / GAC in Batik Industry Liquid Waste. 14(1), 44–52.

Haryono, H., Faizal D, M., Liamita N, C., & Rostika, A. (2018). Pengolahan Limbah Zat Warna Tekstil Terdispersi dengan Metode Elektroflotasi. EduChemia (Jurnal Kimia Dan Pendidikan), 3(1), 94.https://doi.org/10.30870/educhemia.v3i1.2625

Hejazi,S., Mohajernia,^S., Wu, Y., Andryskova, P., Zoppellaro, G., Hwang, I., ... & Schmuki, P. (2019). Intrinsic Cu nanoparticle decoration of TiO2 nanotubes: A platform for efficient noble metal free photocatalytic H2 production.Electrochemistry Communications, 98, 82-86.

Hsu, Y., Yu, C., Lin, H., Chen, Y., & Lin, Y. (2013). Template synthesis of copper oxide nanowires for photoelectrochemical hydrogen generation. Journal Of Electroanalytical Chemistry, 704, 19–23. https://doi.org/10.1016/j.jelechem.2013.06.008

Hu, Q., Huang, J., Li, G., Chen, J., & Zhang, Z. (2016). Applied Surface Science Effective%water splitting using CuO x / TiO2 composite films : Role of Cu species and content in hydrogen generation. 369, 201–206.

Jang, J. S., Ahn, C. W., Won, S. S., & Kim, J. H. (2017). Vertically Aligned Core-Shell PbTiO3@TiO2 Heterojunction Nanotubes Array for Photoelectrochemical and Photocatalytic Applications. https://doi.org/10.1021/acs.jpcc.7b03081

Joseph, A. I. J., & Thiripuranthagan, S. (2018). Non-metal doped titania photocatalysts for the degradation of neonicotinoid insecticides under visible light irradiation. Journal of nanoscience and nanotechnology, 18(5), 3158-3164.

Kobosko, S. M., Jara, D. H., & Kamat, P. V. (2017). AgInS2 − ZnS Quantum Dots: Excited State Interactions with TiO2 and Photovoltaic Performance. https://doi.org/10.1021/acsami.6b14604

Kustiningsih, I., Wibowo, H., & Slamet, S. (2015). Studi Produksi Hidrogen Menggunakan Fotokatalis Pt (1%)/TTitania Nanotube Dengan Sacrifial Agent Methanol dan Gliserol. Jurnal Konversi Universitas Muhammadiyah Jakarta, 4(1), 108939. https://doi.org/10.24853/konversi.4.1.

Kustiningsih, Indar, Platina, D., Mareta, H., Mustofa, D., Purwanto, W., Kimia, D. T., Air, D., Metode, D., & Pengaruh, F. (2010). Dengan Metode Fotokatalisis. 14(1), 11–16.

Kustiningsih, I., Mareta, H., Mustofa, D., Slamet, S., & Purwanto, W. (2019). Pengaruh Morfologi TiO2 Dan Dopant Platina Terhadap Produksi Hidrogen. Jurnal Sains Materi Indonesia, 13(1), 11-16. http://dx.doi.org/10.17146/jusami.2011.13.1.5383

Kustiningsih, Indar, Saripudin, C., Suwansih, S., Sari, D. K., Jayanudin, & Slamet. (2020). Photocatalytic Degradation of Organic Waste in Visible light using TiO2 Nanotubes Array. IOP Conference Series: Materials Science and Engineering,796(1).https://doi.org/10.1088/1757-899X/796/1/012060

Kustiningsih, I., Restiani, R., Raharja, T., Hasna, A., & Sari, D. K. (2020). Degradation of Methyl Violet Using TiO2-Bayah Natural Zeolite Photocatalyst. Jurnal Rekayasa Kimia & Lingkungan,15(1),10-20. https://doi.org/10.23955/rkl.v14i2.11953

Kustiningsih, I., S. Slamet, and W. W. Purwanto, Synthesis of TiO2 nanotubes by using combination of sonication and hydrothermal treatment and their photocatalytic activity for hydrogen evolution, Reaktor, vol. 15, no. 3, pp. 204-211,Nov.2015. https://doi.org/10.14710/reaktor.15.3.204-211

Liu, B., Li, X., Zhao, Q., Ke, J., Tadé, M., & Liu, S. (2015). Preparation of AgInS 2 / TiO2 Composites for Enhanced Photocatalytic Degradation of Gaseous o -dichlorobenzene under Visible Light. ElsevierB.V. https://doi.org/10.1016/j.apcatb.2015.12.003

Li, R., Yang, J., Xu, S., Zhou, Y., Wang, X., Peng, H., & Du, J. (2020). Preparation of Gd-Doped TiO2 Nanotube Arrays by Anodization Method and Its Photocatalytic Activity for Methyl Orange Degradation. Catalysts, 10(3), 298. https://doi.org/10.3390/catal10030298

Malankowska, A., Kulesza, D., Sowik, J., Cavdar, O., Klimczuk, T., Trykowski, G., & Zaleska-Medynska, A. (2020). The Effect of AgInS2, SnS, CuS2, Bi2S3 Quantum Dots on the Surface Properties and Photocatalytic Activity of QDs-Sensitized TiO2 Composite. Catalysts, 10(4). https://doi.org/10.3390/catal10040403

Mózo, B. S. (2017). 済無No Title No Title. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004

Mohd Hasmizam, R., Ismail, N. A., & Yusoff, M. (2017). Study on Band

Gap Energy of F Doped TiO2 Nanotubes. In Materials Science Forum (Vol. 889, pp. 234-238). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.889.234

Muzakkar, M. Z., Umar, A. A., Ilham, I., Saputra, Z., Zulfikar, L., Maulidiyah, M., & Nurdin, M. (2019, June). Chalcogenide material as high photoelectrochemical performance Se doped TiO2/Ti electrode: Its application for Rhodamine B degradation. In Journal of Physics: Conference Series (Vol. 1242, No. 1, p. 012016). IOP Publishing.

Nasirian, M., Lin, Y. P., Bustillo-Lecompte, C. F., & Mehrvar, M. (2018). Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review. International Journal of Environmental Science and Technology, 15(9), 2009–2032. https://doi.org/10.1007/s13762-017-1618-2

Pang, Y. L., Lim, S., Ong, H. C., & Chong, W. T. (2014). Applied Catalysis A : General A critical review on the recent progress of synthesizing techniques and fabrication of TiO2 -based nanotubes photocatalysts. “Applied Catalysis A, General,” 481, 127–142. https://doi.org/10.1016/j.apcata.2014.05.007

Panigrahi, M. R., & Devi, M. (2017). Effect of Annealing Temperature on Structural and Optical properties of Fe Doped TiO 2 Thin Films Prepared by Modified Sol-GelMethod. 090013.https://doi.org/10.1063/1.4980566

Pavithra, K. G., P., S. K., Jaikumar, V., & P., S. R. (2019). Removal of colorants from wastewater: A review on sources and treatment strategies. Journal of Industrial and Engineering Chemistry, 75, 1–19. https://doi.org/10.1016/j.jiec.2019.02.011

Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., Shea, K. O., Entezari, M. H., & Dionysiou, D. D. (2012). Applied Catalysis B : Environmental A review on the visible light active titanium dioxide photocatalysts for environmental applications“Applied Catalysis B, Environmental,” 125, 331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

Pelawi, L. F., Slamet, S., & Elysabeth, T. (2020). Combination of electrocoagulation and photocatalysis for hydrogen production and decolorization of tartrazine dyes using CuO-TiO2 nanotubes photocatalysts. AIP Conference Proceedings, 2223. https://doi.org/10.1063/5.0000953

Peng, T., & Lalman, J. A. (2019). TiO2 Nanomaterials for Enhanced Photocatalysis.https://doi.org/10.1021/bk-2019-1317.ch007

Quang, D. A., Toan, T. T. T., Tung, T. Q., Hoa, T. T., Mau, T. X., & Khieu, D. Q. (2018). Synthesis of CeO2/TiO2 nanotubes and heterogeneous photocatalytic degradation of methylene blue. Journal of environmental chemical engineering, 6(5),5999-6011 https://doi.org/10.1016/j.jece.2018.09.022

Ranjitha, A., Muthukumarasamy, N., Thambidurai, M., Velauthapillai, D., Agilan, S., & Balasundaraprabhu, R. (2015). Effect of reaction time on the formation of TiO2 nanotubes prepared by hydrothermal method. Optik - International Journal for Light and Electron Optics, 17–20. https://doi.org/10.1016/j.ijleo.2015.06.022

Razali, M. H., Noor, A. F. M., & Yusoff, M. (2017). Hydrothermal synthesis and characterization of Cu2+/F–Co-doped titanium dioxide (TiO2) nanotubes as photocatalyst for methyl orange degradation. Science of Advanced Materials, 9(6), 1032-1041. https://doi.org/10.1166/sam.2017.3071

Sa, U., Wihdatul, S., Suprayogi, T., & Diantoro, M. (2019). ScienceDirect The Effect of Time Deposition of PAN / TiO2 Electrospun on Photocurrent Performance of Dye-Sensitized Solar Cell. Materials Today: Proceedings, 13, 175–180. https://doi.org/10.1016/j.matpr.2019.03.210

Sanford, J. R., Larson, R. A., & Runge, T. (2019). Nitrate sorption to biochar following chemical oxidation. Science of the Total Environment, 669, 938–947. https://doi.org/10.1016/j.scitotenv.2019.03.061

Sanjaya, H. (2018). Degradasi Metil Violet Menggunakan Katalis Zno-TiO2 Secara Fotosonolisis. Eksakta: Berkala Ilmiah Bidang MIPA (E-ISSN: 2549-7464), 19(1), 91-99.

Seifhosseini, M., Rashidi, F., Rezaei, M., & Rahimpour, N. (2018). Bias potential role in degradation of methyl orange in photocatalytic process. Journal of Photochemistry and Photobiology A: Chemistry,360,196–203. https://doi.org/10.1016/j.jphotochem.2018.04.007

Shaban, M., Ahmed, A. M., Shehata, N., Betiha, M. A., & Rabie, A. M. (2019). Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of methylene blue. Journal of colloid and interface science, 555, 31-41. https://doi.org/10.1016/j.jcis.2019.07.070

Shakeel Ahmad, M., Pandey, A. K., & Abd Rahim, N. (2017). Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renewable and Sustainable Energy Reviews, 77(March),89–108. https://doi.org/10.1016/j.rser.2017.03.129

Slamet, Agriyfani, D. A., Elysabeth, T., Ibadurrohman, M., & Nurdin, M. (2020). Synthesis of Ni-and N-doped titania nanotube arrays for photocatalytic hydrogen production from glycerol–water solutions. Catalysts, 10(11), 1–17. https://doi.org/10.3390/catal10111234

Sun, L., Guan, J., Xu, Q., Yang, X., Wang, J., & Hu, X. (2018). Synthesis and applications of molecularly imprinted polymers modified TiO2 nanomaterials: A review. Polymers, 10(11). https://doi.org/10.3390/polym10111248

Thahir, R., Wahab, A. W., Nafie, N. La, & Raya, I. (2019). Synthesis and Characterization of TiO2 Nanoparticle as Adsorbent on The Treatment of Methylene Blue Dye Pollutant. Jurnal Rekayasa Kimia & Lingkungan, 14(1), 19–27. https://doi.org/10.23955/rkl.v14i1.13447

Tian, Y., Song, Y., Dou, M., Ji, J., & Wang, F. (2018). Enhanced photo-assistant electrocatalysis of anodization TiO2 nanotubes via surrounded surface decoration with MoS2 for hydrogen evolution reaction. Applied Surface Science,433,197–205. https://doi.org/10.1016/j.apsusc.2017.09.259

Tiwari, A., Duvva, N., Rao, V. N., Venkatakrishnan, S. M., Giribabu, L., & Pal, U. (2018). Tetrathiafulvalene scaffold-based sensitizer on hierarchical porous TiO2: Efficient light-harvesting material for hydrogen production. The Journal of Physical Chemistry C, 123(1), 70-81.

Torimoto, T., Kameyama, T., & Kuwabata, S. (2014). Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions. Journal of Physical Chemistry Letters, 5(2),336–347. https://doi.org/10.1021/jz402378x

Truppi, A., Petronella, F., Placido, T., Striccoli, M., Agostiano, A., Curri, M. L., & Comparelli, R. (2017). Visible-light-active TiO2-based hybrid nanocatalysts for environmental applications. Catalysts,7(4). https://doi.org/10.3390/catal7040100

Wahab, A. W., Taba, P., Gunlazuardi, J., & Java-indonesia, W. (2015). Application Of TiO2 Nanotubes As Photoelectrode Prevention of Stainless Steel In pH Variation of NaCl, Aplikasi TiO2 Nanotube sebagai Fotoelektroda untuk Pencegahan Korosi Stainless Steel pada Variasi pH NaCl. 242–248.

Wang, X., Wang, L. L., Guo, D., Ma, L. L., Zhu, B. L., Wang, P., ... & Huang, W. P. (2019). Fabrication and photocatalytic performance of C, N, F-tridoped TiO2 nanotubes. Catalysis Today, 327, 182-189.

Wazir, M. B., Daud, M., Ali, F., & Al-Harthi, M. A. (2020). Dendrimer assisted dye-removal: A critical review of adsorption and catalytic degradation for wastewater treatment. Journal of Molecular Liquids, 113775. https://doi.org/10.1016/j.molliq.2020.113775

Wildan, A., Pramitaningastuti, A. S., & Anggraeny, E. N. (2018). Pengolahan Limbah Batik Dengan Metode Fotokatalitik Di Desa Gemawang Kabupaten Semarang. 135–141.

Xiao, N., Li, S., Li, X., Ge, L., Gao, Y., & Li, N. (2020). The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chinese Journal of Catalysis, 41(4), 642–671. https://doi.org/10.1016/S1872-2067(19)63469-8

Yan, Y., Yang, M., Shi, H., Wang, C., Fan, J., Liu, E., & Hu, X. (2019). CuInS2 sensitized TiO2 for enhanced photodegradation and hydrogen production. Ceramics International, 45(5),6093-6101. https://doi.org/10.1016/j.ceramint.2018.12.083

Yang, J., Du, J., Li, X., Liu, Y., Jiang, C., Qi, W., & Peng, H. (2019). Highly hydrophilic TiO2 nanotubes network by alkaline hydrothermal method for photocatalysis degradation of methyl orange. Nanomaterials, 9(4), 526. https://doi.org/10.3390/nano9040526

Yin, J., & Jia, J. (2015). Preparation of AgInS2 nanocrystals and their application as sensitizers for TiO2 nanorod array photoelectrodes. IOP Conference Series: Materials Science and Engineering, 87(1). https://doi.org/10.1088/1757-899X/87/1/012114

Yoo, H., Kim, M., Kim, Y. T., Lee, K., & Choi, J. (2018). Catalyst-doped anodic TiO2 nanotubes: Binder-free electrodes for (photo)electrochemical reactions. Catalysts,8(11),1–25. https://doi.org/10.3390/catal8110555

Yoo, J. E., Zazpe, R., Cha, G., Prikryl, J., Hwang, I., Macak, J. M., & Schmuki, P. (2018). Uniform ALD deposition of Pt nanoparticles within 1D anodic TiO2 nanotubes for photocatalytic H2 generation.Electrochemistry Communications, 86(October 2017), 6–11.https://doi.org/10.1016/j.elecom.2017.10.017

Zafar, Z., Ali, I., Park, S., & Kim, J. O. (2020). Effect of different iron precursors on the synthesis and photocatalytic activity of Fe–TiO2 nanotubes under visible light. Ce https://doi.org/10.1016/j.ceramint.2019.10.045 ceramics International, 46(3), 3353-3366.

Zhang, D., Chen, J., Xiang, Q., Li, Y., Liu, M., & Liao, Y. (2019). Transition-Metal-Ion (Fe, Co, Cr, Mn, Etc.) Doping of TiO2 Nanotubes: A General Approach. Inorganic chemistry, 58(19), 12511-12515.

Zhang, J., Yu, Z., Gao, Z., Ge, H., Zhao, S., Chen, C., ... & Qin, Y. (2017). Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production. Angewandte Chemie International Edition, 56(3), 816-820

Zhao, Y., Zhang, J., & Fu, W. (2021). Dual-sensitized modification engineering with enhanced photocatalytic degradation for organic*dye. https://doi.org/10.21203/rs.3.rs-246705/v1

Zulfiqar, M., Chowdhury, S., Sufian, S., & Omar, A. A. (2018). Enhanced photocatalytic activity of Orange II in aqueous solution using solvent-based TiO2 nanotubes: kinetic, equilibrium and thermodynamic studies. Journal of cleaner production, 203, 848-859. https://doi.org/10.1016/j.jclepro.2018.08.324




DOI: https://doi.org/10.23955/rkl.v16i2.20739

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Euis Uswatun Hasanah, Indar Kustiningsih, Slamet Slamet

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JURNAL REKAYASA KIMIA & LINGKUNGAN

Jurusan Teknik Kimia Universitas Syiah Kuala, Jl. Tgk. Syech Abdur Rauf No.7, Kopelma Darussalam, Banda Aceh, INDONESIA

 

PRINCIPAL CONTACT

Nasrul Arahman, Prof. Dr. S.T., M.T.
Phone: +62813-6092-7917
E-mail: rkl@che.unsyiah.ac.id, nasrular@unsyiah.ac.id

 

SUPPORT CONTACT

Mirna Rahmah Lubis
E-mail: mirna@che.unsyiah.ac.id
Wahyu Rinaldi, ST, M.Sc.
E-mail: wahyu.rinaldi@che.unsyiah.ac.id

 

VISITORS