Improvement of the Efficiency of TiO2 Photocatalysts with Natural Dye Sensitizers Anthocyanin for the Degradation of Methylene Blue: Review

Hendrini Pujiastuti, Indar Kustiningsih, Slamet Slamet

Abstract


One of the potential methods utilized for dye degradation is photocatalitic, due to its low cost, highly effective, and environmentally friendly. Effectivenes of TiO2 photocatalysts can be enhanced by adding a dye sensitizer. Dye-sensitizer material absorbs visible light to facilitate electron excitation process. Addition of dye-sensitizer on TiO2 photocatalyst promotes it to be more responsive to visible light. Natural anthocyanin dyes are often used as sensitizers of TiO2 semiconductors. Anthocyanins are, usually in the purple to the red color range, a group of natural dyes found in the flowers, leaves, and fruit of plants. The essential principles of dye sensitization to TiO2 have been explored in this review. It is feasible to reduce the band gap energy in the TiO2 photocatalyst by modifying it using a natural dye sensitized modification. Dye sensitizers on TiO2 nanotubes plate have the potential to be employed in a dye degradation photocatalytic system


Keywords


photocatalysis, TiO2, dye-sensitizer, anthocyanins

Full Text:

PDF

References


Albayati, T. M., A. A. Sabri and R. A. Alazawi (2015). "Separation of Methylene Blue as Pollutant of Water by SBA-15 in a Fixed-Bed Column." Arabian Journal for Science and Engineering 41(7): 2409-2415.

Alsalhy, Q. F., T. M. Albyati and M. A. Zablouk (2013). "A Study of the Effect of Operating Conditions on

/1Reverse Osmosis Membrane Performance with and without Air Sparging Technique." Chemical Engineering Communications 200(1): 1-19.

Antony, R. P., T. Mathews, C. Ramesh, N. Murugesan, A. Dasgupta, S. Dhara, S. Dash and A. K. Tyagi (2012). "Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization." International Journal of Hydrogen Energy 37(10): 8268-8276.

Aswani Yella, H.-W. L., Hoi Nok Tsao,Chenyi Yi,1 Aravind Kumar Chandiran,1 Md.Khaja Nazeeruddin,1 Eric Wei-Guang Diau,3* Chen-Yu Yeh,2*

Shaik M Zakeeruddin,1* Michael Grätzel1 (2011). "Porphyrin-Sensitized Solar Cells withCobalt (IIIII)–Based Redox ElectrolyteExceed 12 Percent Efficiency.pdf."

Atli, A., A. Atilgan, C. Altinkaya, K. Ozel and A. Yildiz (2019). "St. Lucie cherry, yellow jasmine, and madder berries as novel natural sensitizers for dye‐sensitized solar cells." International Journal of Energy Research 43(8): 3914-3922.

Bai, J., B. Zhou, L. Li, Y. Liu, Q. Zheng, J. Shao, X. Zhu, W. Cai, J. Liao and L. Zou (2008). "The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte." Journal of Materials Science 43(6): 1880-1884.

Canbay, C. A. and F. Özkbey (2020). "Fabrication of TiO2 Based Composite Materials by Hidrothermal Method." Turkish Journal of Engineering.

Calogero, G.; Di Marco, G.; Caramori, S.; Cazzanti, S.; Argazzi, R.; Bignozzi, C.A. Natural dye senstizers for photoelectrochemical cells. Energy Environ. Sci. 2009, 2, 1162–1172

Calogero, G. and G. D. Marco (2008). "Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells." Solar Energy Materials and Solar Cells 92(11): 1341-1346.

Campbell, W. M., A. K. Burrell, D. L. Officer and K. W. Jolley (2004). "Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell." Coordination Chemistry Reviews 248(13-14): 1363-1379.

Carlos Diaz-Uribe, William Vallejo, Karina Campos, Wilfrido Solano, Javier Andrade, Amner Munoz-Acevedo, Eduardo Schott, Ximena Zarate.”Improvement of the Photocatalytic activity of TiO2 using Colombian Caribbean Species (Syzygium cumini) as Natural Sensitizrers:Experimental and Theoritical Studies.”

Chowdhury, P.; Gomaa, H.; Ray, A.K. Dye-Sensitized Photocatalyst: A Breakthrough in Green Energy and Environmental Detoxification. ACS Symp. Ser. 2013, 1124, 231–266.

Chaovanalikit, A.; Mingmuang, A.; Kitbunluewit, T.; Choldumrongkool, N.; Sondee, J.; Chupratum, S. Anthocyanin and total phenolics content of mangosteen and e_ect on processing on the quality of mangosteen products. Int. Food Res. J. 2012, 19, 1047–1053.

Costas Pelekani, V. L. S. (2000). "Competitive/1adsorption/1between/1atrazine/1and/1methylene/1blue/1onactivated/1carbon/1the/1importance/1of/1pore/1size/1distributio.pdf."

Dariani, R. S., A. Esmaeili, A. Mortezaali and S. Dehghanpour (2016). "Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles." Optik 127(18): 7143-7154

Dong P, Hou G, Xi X, et al.”WO3-based photocatalyst: morphology control, activity enhancement and multifunctional applications. Environ Sci Nano., 2017;4:539-557.

Fahimeh Shahvaranfard, M. A., Yi Hou,Seyedsina Hejazi,Wei Meng,Benedict Osuagwu,Ning Li,Christoph J. Brabec,Patrik Schmuki (2020). "Engineering of the Electron Transport LayerPerovskite Interface in Solar Cells Designed on TiO2 Rutile Nanorods.pdf." 8

Fitrihana, N., 2007, Teknik Eksplorasi Zat Pewarna Alam Dari Tanaman Di Sekitar Kita Untuk Pencelupan Bahan Tekstil,

Geetam Richhariya, A. K., Perapong Tekasakul,Bhupendra Gupta (2017). "Natural dyes for dye sensitized solar cell A review.pdf." 14

Ghicov, A., S. P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C. A. Schiller, P. Falaras and P. Schmuki (2009). "TiO2 nanotubes in dye-sensitized solar cells: critical factors for the conversion efficiency." Chem Asian J 4(4): 520-525

Ghosh, M., Chowdhury, P., and Ray, A.,J. (2020).”Photocatalytic Activity of Aeroxide TiO2 Sensitized by Natural Dye Extracted from Mangosteen Peel.” Catalyst,10,917.

Gong J.,Liang J., Sumathly K.”Review on Dye sensitized Solar Cells (DSSCs:fundamental concept and novel materials. Renew Sustain Energy, Rev 2012;16:5848-60

Halme, J., 2002. Dye-sensitized nanostructured and organic photovoltaic cells: technical review and preliminary tests. Helsınkı Unıversıty Technol.

Hamed Safajou, H. K., Masoud Salavati-Niasari,Sobhan Mortazavi-Derazkola (2017). "Enhanced Photocatalytic Degradation of Dyes over GraphenePdTiO2 Nano-composites TiO2 Nanowires versus TiO2 Nanoparticles.pdf." 33.

Hanum, T. 2000. Ekstraksi dan Stabilisasi Zat Pewarna Alam dari Katul Beras Ketan Hitam (Oryza sativa glutinosa). Buletin Teknologi dan Industri Pangan XI (1) : 17 – 23.

Harborne, J. B., 1996, Metode Fitokimia Penuntun Cara Modern Menganalisis Tumbuhan, a.b. Kosasih Padmawinata dan Iwang Soediro, Terbitan Kedua, Penerbit ITB, Bandung

Hao, S., J. Wu, Y. Huang and J. Lin (2006). "Natural dyes as photosensitizers for dye-sensitized solar cell." Solar Energy 80(2): 209-214.

I. Kustiningsih, S. Slamet, and W. W. Purwanto, "Synthesis of TiO2 nanotubes by using combination of sonication and hydrothermal treatment and their photocatalytic activity for hydrogen evolution," Reaktor, vol. 15, no. 3, pp. 204-211, Nov. 2015. https://doi.org/10.14710/reaktor.15.3.204-211

Ismail, M.; Ludin, N.A.; Hamid, N.H.; Ibrahim, M.A.; Sopian, K. The E_ect of Chenodeoxycholic Acid (CDCA) in Mangosteen (Garcinia mangostana) Pericarps Sensitizer for Dye-Sensitized Solar Cell (DSSC). J. Phys. Conf. Ser. 2018, 1083, 012018

Jallouli N, Elghniji K, TrabelsiH and Ksibi (2017).” Photocatalytic degradation of paracetamol on TiO 2 nanoparticles and TiO2/cellulosic fiber underUVand sunlight irradiation” Arab. J. Chem. 10 S3640–5

Jennyfer Diaz-Anguloa, Jose Lara-Ramosa, Miguel Muesesb, Aracely Hernández-Ramírezc, Gianluca Li Pumad, Fiderman Machuca-Martínez (2020). Enhancement of the oxidative removal of diclofenac and of the TiO2 rate of photon absorption in dye-sensitized solar pilot scale CPC photocatalytic reactors

Jin, X., M. Q. Jiang, X. Q. Shan, Z. G. Pei and Z. Chen (2008). "Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite." J Colloid Interface Sci 328(2): 243-247.

Joshua J Samuel and F K Yam (2020). “Photocatalytic Degradation of Methylene Blue under Visible Light by Dye Sensitized Titania”. Material Research Express 7 (2020) 015051,

Julie J.Murcia, Elsa G.Avila-Martinez, Hugo Rojas Jairo Cubillos, Svetlana Ivanova, Anna Penkova, and Oscar H. Laguna (2019).”Powder and Nanotubes Titania Modified by Dye Sensitization as Photocatalysts for the Organic Pollutants Elimination”. Nanomaterials2019,9,517;doi:10.3390/nano9040517.

Kang, S. H., S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon and Y. E. Sung (2008). "Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency." Advanced Materials 20(1): 54-58.

Khusniati, Miranita. 2007. Kulit Manggis Pewarna Alami Batik. http://www.suaramerdeka.com/harian/0711/12/ragam05.htm.

Kristianti, A. N., 2008, Buku Ajar Fitokimia, Airlnggan University Press, Surabaya

Kumar R, Sharma,A.K.,Parmar VS, Watterson AC, Chittibabu KG, Kumar J.”Flexible Dye Sensitized Solar Cells employing biocatalytically synthesized polymeric electrolytes. Chem. Mater 2004; 16:4841-6.

Kustiningsih, I., Saripudin, C., Suwansih, S., Sari, D.K., Jayanudin, Slamet, (2020). "Photocatalytic Degradation of Organic Waste in Visible light using TiO2 Nanotubes Array, IOP Conf. Ser.: Mater. Sci. Eng. 796 012060

Kustiningsih, I., Sari. D., K., (2017) Uji Adsorbsi zeolit alam bayah dan pengaruh sinar ultraviolet terhadap degradasi limbah methylene Blue, Teknika 13, no 1, h: 25-32.

Kustiningsih, I., Restiani, R., Raharja, T., Hasna, A., Sari, D.K., (2020), Degradation of Methyl Violet using TiO2 Bayah Natural Zeolite Photocatalyst, Rekayasa Kimia & Lingkungan, vol 15, No 1, p 10-20

Lai, C. W. and S. Sreekantan (2011). "Effect of Applied Potential on the Formation of Self-OrganizedTiO2Nanotube Arrays and Its Photoelectrochemical Response." Journal of Nanomaterials 2011: 1-7

Laily, F., P, et al, (2020). Combination of Electrocoagulation and Photocatalyst for Hydrogen Productionband Decolorization of Tartrazine Dyes Using CuO-TiO2 Nanotubes Photocatalysts.

Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, andWines by the pH Di_erential Method: Collaborative Study.J. AOAC Int. 2005, 88, 1269–1278.

Li, H., G. Wang, J. Niu, E. Wang, G. Niu and C. Xie (2019). "Preparation of TiO2 nanotube arrays with efficient photocatalytic performance and super-hydrophilic properties utilizing anodized voltage method." Results in Physics 14.

Li Q, Chen X, Tang Q, Cai H, Qin Y, He B.”Enhanced photovoltaic performances of quasi-solid state dye sensitized solar cells using a novel conducting gel electrolyte”. J Power Sourcess, 2014;248,923-30.

Li Q., Shang K.J. 2009. Self Organized Nitrigen ang Fluorine Co-Doped Titanium Oxide Nanotube Arrays with Enhanced Visible Ligh Photocataliytic Perfoemance. Environ. Sci. Technol. 43:8923-8929.

Liu, G., Sun, C., Cheng, L., Jin, Y., Lu, H., Wang, L., et al., (2009). Efficiency Promotion of Anatase TiO2 Photocatalysis via Bifunctional Surface-Terminating Ti-O-B-N Structures. J. Phys. Chem C, 113, 12317 – 12324

Lilik Wuri Hadayani, I. R., Rita Dwi Ratnani (2015). "ADSORPSI PEWARNA METILEN BIRU MENGGUNAKAN/1SENYAWA XANTHAT PULPA KOPI .pdf." Momentum 11: 5.

Liu, X., Z. Liu, J. Zheng, X. Yan, D. Li, S. Chen and W. Chu (2011). "Characteristics of N-doped TiO2 nanotube arrays by N2-plasma for visible light-driven photocatalysis." Journal of Alloys and Compounds 509(41): 9970-9976.

Macak, J. M. and P. Schmuki (2006). "Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes." Electrochimica Acta 52(3): 1258-1264.

Macak, J. M., H. Hildebrand, U. Marten-Jahns and P. Schmuki (2008). "Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes." Journal of Electroanalytical Chemistry 621(2): 254-266.

Masaoud Giadhi, D. P., Shilpi Agarwal,Gomaa A.M.Ali, Kwok Feng Chong, Vinod Kumar Gupta (2019). "Preparation-of-Mg-Doped-TiO2-Nanoparticles-For-Photocatalytic-Degradation-of-Some-Organic-Pollutants.pdf." 12.

Mehmood U, Rahman S, Harrabi K, Hussein IA, Reddy BVS.”Review Article: Recent Advances in dye sensitized solar cells. Adv Mater Sci Eng. 2014:1-13.

Nerine J. Cherepy, G. P. S., Michael Gra1tzel,Jin Z. Zhang (1997). "Ultrafast Electron Injection Implications for a Photoelectrochemical Cell Utilizing anAnthocyanin Dye-Sensitized TiO2Nanocrystalline Electrode.pdf."/1101: 10.

Ou H.H., Lo S.L. 2007. Review of Titania Nanotubes Synthesized via the Hydrothermal Treatment: Fabrication, Modification, and Application. Sep. Purif. Technol. 58: 179 191.

Patrocínio, A. O. T., S. K. Mizoguchi, L. G. Paterno, C. G. Garcia and N. Y. M. Iha (2009). "Efficient and low cost devices for solar energy conversion: Efficiency and stability of some natural-dye-sensitized solar cells." Synthetic Metals 159(21-22): 2342-2344.

Pelaez, M., N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari and D. D. Dionysiou (2012). "A review on the visible light active titanium dioxide photocatalysts for environmental applications." Applied Catalysis B: Environmental 125: 331-349.

Pan, X., Q. Xie, W.-l. Chen, G.-l. Zhuang, X. Zhong and J.-g. Wang (2013). "Tuning the catalytic property of TiO2 nanotube arrays for water splitting." International Journal of Hydrogen Energy 38(5): 2095-2105.

Pinto, A.L.M. Light Harvesting in Solar Cells Using Natural Pigments from Red Fruits Adsorbed to Mesoporous TiO2. Master’s Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, November 2015.

Polo AS., Itokam MK., Iha NYM.”Metal Complex Sensitizers in dye-sensitized solar cells. Coord. Chem Rev. 2004;248:1343-61.

Qosim, Warid Ali. 2007. Kulit Buah Manggis sebagai Antioksidan. http//anekaplanta.wordpress.com/2007/12/26/kulit-buah-manggis-sebagaiantioksidan Diakses pada 31 Maret 2009.

Ramchiary, A. (2020). Metal-oxide semiconductor photocatalysts for the degradation of organic contaminants. Handbook of Smart Photocatalytic Materials, Elsevier: 23-38.

Rafatullah, M., O. Sulaiman, R. Hashim and A. Ahmad (2010). "Adsorption of methylene blue on low-cost adsorbents: a review." J Hazard Mater 177(1-3): 70-80.

Rajan, A. K. and L. Cindrella (2019). "Studies on new natural dye sensitizers from Indigofera tinctoria in dye-sensitized solar cells." Optical Materials 88: 39-47.

Regonini D., C.R. Bowen, A. Jaroenworaluck, R. Stevens, (2013). A Review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes Material Science and Engineering R.

Riyan M., Progress in Ruthenium Complexes for Dye Sensitized Solar Cells. Platin Met Rev 2009; 53:216-8

Roosta, M., M. Ghaedi, A. Daneshfar, R. Sahraei and A. Asghari (2014). "Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology." Ultrason Sonochem 21(1): 242-252.

Roy,P. Berger, S., Schmuki, P., 2011. TiO2 nanotubes: synthesis and apllications.”Chem Ind. Ed. Int. Ed. 50 (13), 2904-2939.

Shaban, M., A. M. Ahmed, N. Shehata, M. A. Betiha and A. M. Rabie (2019). "Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of methylene blue." J Colloid Interface Sci 555: 31-41.

Shalini S.,Prabhu RB., Prasanna S., Mallick TK.,Shenthilarasu S.”Review on natural Dye Sensitized Solar Cell: operation, materials, and method”. Renew Sustain Energy Rev 2015;51:1306-25./1PA.,Vatikioti

A.,Gupta KSV.,Gayathri/1T.,Nagarjuna P.,Singh SP., Chandrashekaram M., Banthiya A..”Stepwise on co-sensitization as a useful yool for enhancement of power conversion efficiency of dye sensitized solar cells:the case of unsymetrical porphyrin and a metal free organics dye. Org.Electro.,2014;15:1324-37.

Slamet & Kurniawan, R., (2018). Degradation of Tartrazine and Hydrogen Production Simultaneously with Combination of Photocatalysis-Electrocoagulation.

Sreekantan, S., Z. Lockman, R. Hazan, M. Tasbihi, L. K. Tong and A. R. Mohamed (2009). "Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization." Journal of Alloys and Compounds 485(1-2): 478-483.

S.T Rahmat, W. K. T., G. Kawamura,A. Matsuda,Z. Lockman (2019). "Facile Fabrication of rGO/Rutile TiO2 Nanowires as Photocatalyst for Cr(VI) Reduction.pdf." 9.

Suarez CM, Hernandez S, Russo N.”BiVO4 as photocatalyst for solar fuels production through water splitting:a short review”. Appl Cat A: General, 2015;504:158-170.

Sulaiman, F., Sari, D.K., Kustiningsih, I., (2017), The influence of ozone on the photocatalytic degradation of phenol using TiO2 photocatalyst supported by Bayah natural zeolite, AIP Conference Proceedings 1840, 110014 (2017); https://doi.org/10.1063/1.4982344

Sun, Y. and K.-P. Yan (2014). "Effect of anodization voltage on performance of TiO2 nanotube arrays for hydrogen generation in a two-compartment photoelectrochemical cell." International Journal of Hydrogen Energy 39(22): 11368-11375

Trandafilović, L. V., D. J. Jovanović, X. Zhang, S. Ptasińska and M. D. Dramićanin (2017). "Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles." Applied Catalysis B: Environmental 203: 740-752

Wang, Q. and Z. Yang (2016). "Industrial water pollution, water environment treatment, and health risks in China." Environ Pollut 218: 358-365.

Wang, J., Y. Zeng, L. Wan, J. Zhao, J. Yang, J. Hu, F. Miao, W. Zhan, R. Chen and F. Liang (2020). "Catalyst-free fabrication of one-dimensional N-doped carbon coated TiO2 nanotube arrays by template carbonization of polydopamine for high performance electrochemical sensors." Applied Surface Science 509.

Watanabe, M. (2017). "Dye-sensitized photocatalyst for effective water splitting catalyst." Sci Technol Adv Mater 18(1): 705-723.-TiO2 thin films sensitized by natural dyes extracted from Bactris guineensis.”R.Soc.open sci.6:181824

William Vallejo, Angie Rueda, Carlos Diaz-Uribe, Carlos Grande, Patricia Quintana.”Photocatalytic activity of Graphene Oxide-TiO2 thin films sensitized by natural dyes extracted from Bactric guineensis.” R. Soc. Open sci. 6: 181824

Wongcharee, K., V. Meeyoo and S. Chavadej (2007). "Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers." Solar Energy Materials and Solar Cells 91(7): 566-571.

Wu, F., X. Li, W. Liu and S. Zhang (2017). "Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions." Applied Surface Science 405: 60-70.

Wu, F., X. Li, W. Liu and S. Zhang (2017). "Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions." Applied Surface Science 405: 60-70.

Yan, G., M. Zhang, J. Hou and J. Yang (2011). "Photoelectrochemical and photocatalytic properties of N+S co-doped TiO2 nanotube array films under visible light irradiation." Materials Chemistry and Physics 129(1-2): 553-557.

Yuan,Y.;Yin,L.-S;Cao,S.;Li,C.-H.;Xue,C.”Improving photocatalytic hydrogen production of metal-organic framework UiO-66 octahedrons by dye-sensitization”. Appl. Catal. B Environ. 2015, 168, 572-576.

Zyoud, A.: Hilal, H. “Curcumin-sensitized anatase TiO2 nano particles for photodegradation of methyl orange with solar radiation. In Proceedings of the 1st International Conference and Exhibition on the Applications of Information Technology to Renewable Energy Processes and Systems, 10-13 September; Institute of Electrical and Electronics Engineers (IEEE); Piscataway, NJ, USA, 2013; pp. 31-36.

Zyoud, A.H.; Saleh, F.; Helal, M.H.; Shawahna, R.; Hilal, H.S. Anthocyanin-Sensitized TiO2 Nanoparticles for Phenazopyridine Photodegradation under Solar Simulated Light. J. Nanomater. 2018, 2018, 2789616.




DOI: https://doi.org/10.23955/rkl.v16i2.21314

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Indar Kustiningsih

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JURNAL REKAYASA KIMIA & LINGKUNGAN

Jurusan Teknik Kimia Universitas Syiah Kuala, Jl. Tgk. Syech Abdur Rauf No.7, Kopelma Darussalam, Banda Aceh, INDONESIA

 

PRINCIPAL CONTACT

Nasrul Arahman, Prof. Dr. S.T., M.T.
Phone: +62813-6092-7917
E-mail: rkl@che.unsyiah.ac.id, nasrular@unsyiah.ac.id

 

SUPPORT CONTACT

Mirna Rahmah Lubis
E-mail: mirna@che.unsyiah.ac.id
Wahyu Rinaldi, ST, M.Sc.
E-mail: wahyu.rinaldi@che.unsyiah.ac.id

 

VISITORS