Profil Filtrasi Larutan Sodium Alginat pada Modul Tunggal Cross-flow Membran Polyethersulfone

Suffriandy Satria, Fachrul Razi, Nasrul Arahman

Abstract


Kajian penurunan dan rekoveri fluks pada proses ultrafiltrasi larutan natural organic matter (NOM) dengan membran polyethersulfone telah dilakukan. Larutan sodium alginate digunakan sebagai model NOM dalam air, dan profil filtrasinya dipelajari berdasarkan waktu operasi. Proses filtrasi menggunakan modul cross-flow dengan konfigurasi aliran filtrasi pressure driven outside (PDO). Profile permeabilitas larutan SA pada membranpolyethersulfonetelah diamati dengan berbagai perlakuan, diantaranya efek keberadaan ion logam Ca2+ dan Mg2+ serta pengaruh pH larutan (kondisi asam, basa dan netral). Membran polyethersulfone (PES) dengan tambahan Aerosol OT digunakan untuk mengetahui kinerjanya.  Flux recovery ratio (FRR) merupakan salah satu indikator untuk mengetahui sifat fouling yang terbentuk pada permukaan membran. Secara umum larutan SA dalam kondisi asam memiliki nilai FRR terkecil, sedangkan sampel dalam kondisi basa memiliki nilai FRR terbesar. Perolehan fluks larutan SA dengan penambahan ion Mg2+ lebih besar dibandingkan dengan penambahan ion Ca2+. Larutan SA pada kondisi pH basa menghasilkan penurunan nilai fluks lebih kecil dibandingkan pada pH Asam dan netral. Rejeksi partikel SA tertinggi diperoleh pada kondisi asam menggunakan membran PES Aerosol OT yaitu sebesar 46,88%.

Keywords


membran hollow-fiber, ultrafiltrasi, natrium alginat, Flux recovery ratio.

Full Text:

PDF

References


Chang, H., Liang, H., Qu, F., Shao, S., Yu, H., & Liu, B. (2016). Role of backwash water composition in alleviating ultra fi ltration membrane fouling by sodium alginate and the effectiveness of salt backwashing. Journal of Membrane Science, 499, 429–441. http://doi.org/10.1016/j.memsci.2015.10.062.

Chang, H., Qu, F., Liu, B., Yu, H., Li, K., Shao, S., … Liang, H. (2015). Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid: Effects of membrane properties and backwash water composition. Journal of Membrane Science, 493, 723–733. http://doi.org/10.1016/j.memsci.2015.07.001.

Charfi, A., Yang, Y., Harmand, J., Ben Amar, N., Heran, M., & Grasmick, A. (2015). Soluble microbial products and suspended solids influence in membrane fouling dynamics and interest of punctual relaxation and/or backwashing. Journal of Membrane Science, 475, 156–166. http://doi.org/10.1016/j.memsci.2014.09.059.

Garcia-Ivars, J., Iborra-Clar, M. I., Alcaina-Miranda, M. I., Mendoza-Roca, J. A., & Pastor-Alcañiz, L. (2015). Treatment of table olive processing wastewaters using novel photomodified ultrafiltration membranes as first step for recovering phenolic compounds. Journal of Hazardous Materials, 290, 51–59. http://doi.org/10.1016/j.jhazmat.2015.02.062.

Garcia-Ivars, J., Iborra-Clar, M.-I., Alcaina-Miranda, M.-I., & Van der Bruggen, B. (2015). Comparison between Hydrophilic and Hydrophobic metal nanoparticles on the phase separation phenomena during formation of asymmetric polyethersulphone membranes. Journal of Membrane Science, 493, 709–722. http://doi.org/http://dx.doi.org/10.1016/j.memsci.2015.07.009.

Han, B., Zhang, D., Shao, Z., Kong, L., & Lv, S. (2013). Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes. Desalination, 311, 80–89. http://doi.org/10.1016/j.desal.2012.11.002.

Hao, Y., Moriya, A., Maruyama, T., Ohmukai, Y., & Matsuyama, H. (2011). Effect of metal ions on humic acid fouling of hollow fiber ultrafiltration membrane. Journal of Membrane Science, 376(1-2), 247–253. http://doi.org/10.1016/j.memsci.2011.04.035.

Hashino, M., Hirami, K., Katagiri, T., Kubota, N., Ohmukai, Y., Ishigami, T., … Matsuyama, H. (2011). Effects of three natural organic matter types on cellulose acetate butyrate microfiltration membrane fouling. Journal of Membrane Science, 379(1-2), 233–238. http://doi.org/10.1016/j.memsci.2011.05.068.

Hashino, M., Katagiri, T., Kubota, N., Ohmukai, Y., & Maruyama, T. (2011). Effect of membrane surface morphology on membrane fouling with sodium alginate. Journal of Membrane Science, 366(1-2), 258–265. http://doi.org/10.1016/j.memsci.2010.10.014.

Katsoufidou, K., Yiantsios, S. G., & Karabelas, A. J. (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions : the effect of backwashing on flux recovery, 220, 214–227. http://doi.org/10.1016/j.desal.2007.02.038.

Li, X., Fang, X., Pang, R., Li, J., Sun, X., Shen, J., … Wang, L. (2014). Self-assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling. Journal of Membrane Science, 467, 226–235. http://doi.org/10.1016/j.memsci.2014.05.036.

Motsa, M. M., Mamba, B. B., D’Haese, A., Hoek, E. M. V, & Verliefde, A. R. D. (2014). Organic fouling in forward osmosis membranes: The role of feed solution chemistry and membrane structural properties. Journal of Membrane Science, 460, 99–109. http://doi.org/10.1016/j.memsci.2014.02.035.

Nazemidashtarjandi, S., Mousavi, S. A., & Bastani, D. (2017). Preparation and characterization of polycarbonate/thermoplastic polyurethane blend membranes for wastewater filtration. Journal of Water Process Engineering, 16, 170–182. http://doi.org/10.1016/j.jwpe.2017.01.004.

Qomarudin, Q., Orbell, J. D., Ramchandran, L., Gray, S. R., Stewart, M. B., & Vasiljevic, T. (2015). Properties of beta-lactoglobulin / alginate mixtures as a function of component ratio , pH and applied shear. FRIN, 71, 23–31. http://doi.org/10.1016/j.foodres.2015.02.024.

Vargas, A., Moreno-Andrade, I., & Buitrón, G. (2008). Controlled backwashing in a membrane sequencing batch reactor used for toxic wastewater treatment. Journal of Membrane Science, 320(1-2), 185–190. http://doi.org/10.1016/j.memsci.2008.03.073.

Xu, W. T., Zhao, Z. P., Liu, M., & Chen, K. C. (2015). Morphological and hydrophobic modifications of PVDF flat membrane with silane coupling agent grafting via plasma flow for VMD of ethanol-water mixture. Journal of Membrane Science, 491, 110–120. http://doi.org/10.1016/j.memsci.2015.05.024.

Xu, X., Luo, L., Liu, C., Zhang, Z., & Mcclements, D. J. (2016). Influence of electrostatic interactions on behavior of mixed rice glutelin and alginate systems: pH and ionic strength effects. Food Hydrocolloids. http://doi.org/10.1016/j.foodhyd.2016.09.005.




DOI: https://doi.org/10.23955/rkl.v12i1.7133

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 suffriandy satria

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurusan Teknik Kimia
Fakultas Teknik Universitas Syiah Kuala
Jl. Syech Abdurrauf No. 7, Darussalam
Banda Aceh 23111, Indonesia
Tel. +62-651-7412301 Fax. (0651) 52222

StatistikCreative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License