Rapid Classification Of Agricultural Products Based On Their Electro-Optic Properties Using Near Infrared Reflectance And Chemometrics

Agus A. Munawar

Abstract


Abstract. Near infrared technology have been widely applied in many fields, including agriculture especially in sorting and grading process. The advantage of this technology: simple sample preparation, rapid, effective and non-destructive. The main objective of this study is to evaluate the feasibility of NIR technology in classifying several agricultural products based on their electro-optic properties. NIR diffuse reflectance spectra of apples, bananas, mangoes, garlics, tomatoes, green grapes, red grapes and oranges were acquired in wavelength range of 1000-2500 nm with gradual increment of 2 nm. Chemometrics methods were applied in combination with NIR spectra data. Classification was performed by applying principal component analysis (PCA) followed by non-iterative partial least square (NIPALS) cross validation. The results showed that NIR and chemometrics was able to differentiate and classify these agricultural products with two latent variables (2 PCs) and total explained variance of 97% (88% PC1 and 9% PC2). Furthermore, it also showed that multiplicative scatter correction (MSC) was found to be effective spectra correction or enhancement method and increased classification accuracy and robustness. It may conclude that NIR technology combined with chemometrics was feasible to apply as a rapid and non-destructive method for sorting and grading agricultural products.

 

Rapid Classification Of Agricultural Products Based On Their Electro-Optic Properties Using Near Infrared Reflectance And Chemometrics

Abstract. Aplikasi teknologi near infra red (NIR) telah digunakan dalam banyak bidang, termasuk untuk bidang pertanian terutama pada proses sortasi dan grading. Keunggulan metode ini antara lain : rapid, efektif, simultan dan tanpa merusak objek yang dikaji. Tujuan utama dari studi ini adalah untuk mengkaji potensi NIR dalam mengklasifikasi beberapa produk pertanian berdasarkan karakteristik sifat elektro-optik dari produk tersebut. Spektrum NIR pada panjang gelombang 1000 – 2500 nm dengan increment 2 nm diakuisisi untuk produk pertanian : apel, pisang, manga, bawang putih, tomat, anggur hijau, anggur merah dan jeruk. Metode chemo metrics digunakan dalam studi ini untuk dikombinasikan dengan spektrum NIR. Klasifikasi produk pertanian dilakukan dengan menerapkan metode principal component analysis (PCA) yang disertai dengan metode non-iterative partial least square (NIPALS) cross validation. Hasil studi menunjukkan bahwa kombinasi NIR dan chemo metrics mampu membedakan dan mengklasifikasi produk pertanian tersebut dengan menggunakan dua latent variable pada PCA (2 PCs) dengan total explained variance 97% (88% PC1 dan 9% PC2). Selain itu, dari studi ini juga didapatkan bahwa perbaikan data spectrum dengan metode multiplicative scatter correction (MSC) sebelum klasifikasi mampu meningkatkan akurasi hasil klasifikasi. Secara umum, dapat disimpulkan bahwa teknologi NIR dan chemo metrics dapat dijadikan sebagai metode yang efektif untuk sortasi dan atau grading produk pertanian.

Keywords


NIR; chemometrics; classification; PCA; klasifikasi

Full Text:

PDF

References


Bobelyn, E., Serban, A. S., Nicu, M., Lammertyn, J., Nicolai, B. M., and Saeys, W. 2010. Postharvest quality of apple predicted by NIR-spectroscopy: Study of the effect of biological variability on spectra and model performance. Postharvest Biology and Technology, 55, 133-143.

Cen, H. Y., Bao, Y. D., He, Y., and Sun, D. W. 2007. Visible and near infrared spectroscopy for rapid detection of citric and tartaric acids in orange juice. Journal of Food Engineering, 82, 253–260.

Cen, H., and He, Y. 2007. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science and Technology, 18, 72-83.

Chen, L., Xue, X., Ye, Z., Zhou, J., Chen, F., and Zhao, J. 2011. Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy. Food Chemistry, 128, 1110–1114.

Clark, R. N. 1999. Spectroscopy of rocks and minerals and principles of spectroscopy. In Rencz, A. N (Ed.), Manual of remote sensing. (Volume 3): Remote sensing for the earth sciences, (pp. 3-58). New York: John Wiley and Sons, (Chapter 1).

Cozzolino, D., Cynkar, W. U., Shah, N., and Smith, P. 2011. Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality. Food Research International, 44, 1888-1896.

Curda, L., and Kukackova, O. 2004. NIR spectroscopy: a useful tool for rapid monitoring of processed cheeses manufacture. Journal of Food Engineering, 61, 557–560.

Fan, G., Zha, J., Du, R., and Gao, L. 2009. Determination of soluble solids and firmness of apples by Vis/NIR transmittance. Journal of Food Engineering, 93, 416-420.

Gomez, A. H., He, Y., and Pereira, A. G. 2006. Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. Journal of Food Engineering, 77, 313–319.

Jaiswal, P., Jha, S. N., and Bharadwaj, R. 2012. Non-destructive prediction of quality of banana using spectroscopy. ScientiaHorticulturae, 135, 14-22.

Jha, S. N., Jaiswal, P., Narsaiah, K., Gupta, M., Bhardwaj, R., and Singh, A. K. 2012. Non-destructive prediction of sweetness of intact mango using near infrared spectroscopy. ScientiaHorticulturae, 138, 171-175.

Kavdir, I., Lu, R., Ariana, D., and Ngouajio, M. 2007. Visible and near–infrared spectroscopy for nondestructive quality assessment of pickling cucumbers. Postharvest Biology and Technology, 44, 165–174.

Liu, Y. D., Ying, Y. B., Fu, X. P., and Lu, H. S. 2007. Experiments on predicting sugar content in apples by FT-NIR Technique. Journal of Food Engineering, 83, 986–989.

Liu, Y., Chen, X., and Ouyang, A. 2008. Nondestructive determination of pear internal quality indices by visible and near-infrared spectrometry. LWT - Food Science and Technology, 41, 1720–1725.

Naes, T., Isaksson, T., Fearn, T., and Davies, T. 2004. A user-friendly guide to multivariate calibration and classification. Chichester, UK: NIR publications.

Nicolai, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., andLamertyn, J. 2007. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biology and Technology, 46, 99-118.

Penchaiya, P., Bobelyn, E., Verlinden, B. E., Nicolai, B. M., and Saeys, W. 2009 . Non-destructive measurement of firmness and soluble solids content in bell pepper using NIR spectroscopy. Journal of Food Engineering, 94, 267-273.

Reich, G. 2005. Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Advanced Drug Delivery Reviews, 57, 1109-1143.

Siesler, H.W., Ozaki, Y., Kawata, S., and Heise, H. M. 2002. Near Infrared Reflectance Spectroscopy : Principles, Instrument and Application. Wiley VHC Verlag, GmbH, Weinheim.

Strang, G.C. 2004. Near Infrared Reflectance Spectroscopy and its Specific Applications in Livestock Agriculture. School of Bioresources Engineering and Environmental Hydrology. University of Kwazulu-Natal, Pietermaritzburg.

Vesela, A., Barros, A. S., Synytsya, A., Delgadillo, I., Copikova, J., and Coimbra, M. A. 2007. Infrared spectroscopy and outer product analysis for quantification of fat, nitrogen, and moisture of cocoa powder. AnalyticaChimicaActa, 601, 77–86.

Workman, J., and Shenk, J. 2004. Understanding and using the near-infrared spectrum as an analytical method. In: Near-infrared spectroscopy in agriculture. Roberts, C.A., J. Workman, and J.B. Reeves III (Eds). ASA, CSSA and SSSA publications, Madison, Wisconsin, 3-10.

Workman, J., and Weyer, L. 2008. Practical guide to interpretative near infrared Spectroscopy. Taylor and Francis, Boca Raton, USA: CRC Press 332.




DOI: https://doi.org/10.17969/rtp.v8i1.2683

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Rona Teknik Pertanian




Creative Commons LicenseISSN: 2085-2614E-ISSN: 2528-2652
Copyright© 2009-2017 | ISSN: 2085-2614 | EISSN: 2528-2654
Rona Teknik Pertanian is licensed under a Creative Commons Attribution 4.0 International License.

 

Published by: 
Program Studi Teknik PertanianFakultas Pertanian, Universitas Syiah Kuala 
associated with Perhimpunan Teknik Pertanian Indonesia (Cabang Aceh). 
Jl. Tgk. Hasan Krueng Kalee No. 3, Kopelma Darussalam,
Banda Aceh, 23111, Indonesia.
Email: jronatp@unsyiah.ac.id


Online Submissions & Guidelines Editorial Policies | Contact Statistics Indexing | Citations