Response of Peranakan Tawah Male Goat Given Palm Kernel Cake on Dry Matter Digestibility and Body Sizes

ASRIL

ABSTRACT

A study on dry matter digestibility and body sizes of Peranakan Etawah male goat given palm kernel cake (PKC) conducted at the experimental farm of Agriculture Faculty of Syiah Kuala University. Twelve Peranakan etawah male goats about 10-17 kg live weight were used in the experiment. Randomized block design with 3 blocks and 4 treatments consists of R0 (without PKC), R1 (100 g PKC), R2 (200 g PKC), and R3 (300 g PKC) was applied in this experiment. Parameters measured were dry matter digestibility, crude protein digestibility, crude fiber digestibility, body length, chest gird, and shoulder height. The result showed that PKC significantly (P<0.01) affected crude protein and significantly (P<0.05) affected crude fiber digestibility, body length and chest gird of Peranakan etawah male goats. However, Peranakan etawah male goats given PKC have no response on dry matter digestibility and shoulder height.

Key Word: Palm Kernel Cake (PKC), Peranakan Etawah, digestibility, dry matter, crude protein, crude fiber, chest gird, body length, shoulder height

PENDAHULUAN

Ternak kambing merupakan salah satu ternak yang telah tersebar sampai keseluruhan pelosok tanah air, dimana pemeliharaannya bervariasi, dari usaha tambahan atau sampingan sampai usaha berskala besar. Peningkatan produksi dapat dicapai melalui beberapa cara antara lain penambahan populasi dan peningkatan produktivitas ternak dalam menghasilkan daging seperti mempercepat pertumbuhan, sehingga lama pemeliharaan untuk mendapatkan berat potong menjadi lebih singkat. Untuk itu diperlukan bahan pakan yang ketersediaannya baik kualitas maupun kuantitasnya memadai.

Bungkil inti sawit merupakan suatu alternatif pilihan yang sangat menguntungkan karena dengan semakin meningkatnya areal perkebunan kelapa sawit maka jumlah produksi dan limbahnya semakin meningkat. Dari seluruh produksi tandan buah sawit hanya sekitar 22.1 persen berupa hasil utama yaitu 20 persen minyak sawit dan 2.1 persen minyak inti sawit. Sekitar 22 persen berupa hasil ikutan (bungkil inti sawit, BIS) dan sebelahnya 75.7 persen berupa limbah antara lain tandan buah kosong, serat perasan buah dan Lumpur minyak sawit (1). Penentuan produksi ternak dapat dilihat dari ukuran-ukuran badan yang banyak hubungannya dengan performa ternak. Disamping itu juga ukuran-ukuran tubuh dapat memberikan gambaran bentuk tubuh hewan sebagai suatu ciri khas bangsa ternak tertentu. Selain itu juga ukuran-ukuran badan dapat digunakan dalam menyeleksi ternak dan memberikan hasil yang baik (Kidwell dan McCormick, 1965).

Potensi nilai makanan untuk menyediakan zat makanan tertentu atau energi dapat ditentukan dengan jalan analisis kimia. Tetapi nilai sebenarnya dari makanan untuk hewan ditunjukkan dengan bagian yang hilang setelah pencernaan, penyerapan dan metabolisme. Bagian
yang hilang dalam proses penceernaan dapat diterangkan secara langsung dengan menghitung bagian zat makanan yang diekskresikan dalam feces, yaitu persentase daya cerna atau koefisien cerna zat makanan (Tillman, dkk., 1986). Tinggi rendahnya daya cerna suatu bahan makanan dipengaruhi oleh termaknya dan cara memberikan bahan makanan tersebut. Makin halus suatu bahan makanan maka semakin tinggi daya cernanya (Sostroamidjojo dan Soerndjji, 1986).

Penelitian ini bertujuan untuk mengetahui pengaruh pemberian bungkil inti sawit terhadap koefisien cerna bahan kering dan ukuran tubuh Kambing Peranakan Etawah Jantetan.

METODE PENELITIAN

Materi yang digunakan dalam penelitian ini adalah 12 ekor kambing Peranakan Etawah (PE) Jantetan, dengan bobot badan berkisar antara 10 sampai 17 kg yang berumur 10-12 bulan. Setiap ekor kambing ditempatkan dalam kandang individual, sedangkan bahan yang digunakan meliputi ; rumput lapangan, dedak padi halus, bungkil kelapa, bungkil inti sawit, serta dan lamtoro.

Analisis Bahan Pakan

Bahan pakan yang akan dianalisis terlebih dahulu dihaluskan dan dihomogenkan dengan cara digiling dan dicampur sampai rata, kemudian masing-masing bahan pakan tersebut diambil secara acak sebanyak 200 gram. Hasil analisis bahan pakan yang dilakukan di Laboratorium Makanan Ternak Jurusan Peternakan Fakultas Pertanian dapat dilihat pada Tabel 1.

Perlakuan yang diberikan

Dalam penelitian ini menggunakan empat macam ransum perlakuan, dimana setiap perlakuan tersusun sebagai berikut:
- Perlakuan A (R0): 100 gram dedak padi + 100 gram bungkil kelapa + 200 gram lamtoro + rumput lapangan.
- Perlakuan B (R1): 100 gram bungkil inti sawit + 100 gram dedak padi + 100 gram bungkil kelapa + 200 gram lamtoro + rumput lapangan.
- Perlakuan C (R2): 200 gram bungkil inti sawit + 100 gram dedak padi + 100 gram bungkil kelapa + 200 gram lamtoro + rumput lapangan.
- Perlakuan D (R3): 300 gram bungkil inti sawit + 100 gram dedak padi + 100 gram bungkil kelapa + 200 gram lamtoro + rumput lapangan.

Adapun susunan ransum masing-masing perlakuan tertera pada Tabel 2.

Pelaksanaan Penelitian

Sebelum penelitian dilakukan, kandang dan sekitar tempat penelitian dibersihkan. Begitu pula halnya dengan kambing. Sebelum dimasukkan kedalam kandang terlebih dahulu dimandikan serta diberikan obat cacing Valbazen. Penelitian ini meliputi dua tahap yaitu:
- Tahap penyesuaian/adaptasi, tahap ini berlangsung selama 14 hari untuk penyesuaian diri ternak terhadap ransum penelitian dan kondisi lingkungan tempat penelitian.
- Tahap pengumpulan data, pengumpulan data dilakukan setiap 30 hari sekali selama 90 hari (3 kali pengumpulan).

<table>
<thead>
<tr>
<th>Tabel 1. Hasil Analisis Bahan Pakan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahan Makanan</td>
</tr>
<tr>
<td>Rumput Lapangan (%)</td>
</tr>
<tr>
<td>Lamtoro (%)</td>
</tr>
<tr>
<td>Dedak Halus (%)</td>
</tr>
<tr>
<td>Bungkil Kelapa (%)</td>
</tr>
<tr>
<td>Bungkil Inti Sawit (%)</td>
</tr>
</tbody>
</table>

Jurnal Agripet Vol. 6 No. 2 Tahun 2006
Tabel 2. Susunan dan Komposisi Kimia Ransum Penelitian Berdasarkan Bahan Kering (gram)

<table>
<thead>
<tr>
<th>Bahan Pakan</th>
<th>Perlakuan (gram)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R0</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
</tr>
<tr>
<td>Konsentrat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bungkil Inti Sawit</td>
<td>0</td>
<td>84.29</td>
<td>168.58</td>
<td>252.87</td>
</tr>
<tr>
<td>Bungkil Kelapa</td>
<td>88.66</td>
<td>88.66</td>
<td>88.66</td>
<td>88.66</td>
</tr>
<tr>
<td>Dedak Padi</td>
<td>90.70</td>
<td>90.70</td>
<td>90.70</td>
<td>90.70</td>
</tr>
<tr>
<td>Hijauan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamtoro</td>
<td>170.00</td>
<td>170.00</td>
<td>170.00</td>
<td>170.00</td>
</tr>
<tr>
<td>Rumput Lapangan</td>
<td>850.40</td>
<td>766.35</td>
<td>682.06</td>
<td>597.77</td>
</tr>
<tr>
<td>Jumlah</td>
<td>1200.00</td>
<td>1200.00</td>
<td>1200.00</td>
<td>1200.00</td>
</tr>
<tr>
<td>Hasil Analisis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>127.16</td>
<td>141.88</td>
<td>156.58</td>
<td>1171.28</td>
</tr>
<tr>
<td>Lemak</td>
<td>845.41</td>
<td>845.32</td>
<td>845.32</td>
<td>845.32</td>
</tr>
<tr>
<td>Serat Kasar</td>
<td>427.41</td>
<td>427.41</td>
<td>427.41</td>
<td>427.41</td>
</tr>
<tr>
<td>Abu</td>
<td>109.18</td>
<td>101.66</td>
<td>94.12</td>
<td>86.57</td>
</tr>
</tbody>
</table>

Pemberian Pakan
Ransum sesuai dengan yang telah ditetapkan jumlahnya diberikan dua kali dalam sehari yaitu “
1. Pukul 08.00 WIB diberikan bungkil inti sawit, bungkil kelapa, dan dedak padi yang telah dicampur.
2. Pukul 11.00 WIB diberikan rumput lapangan secara ad libitum dan daun lamtoro.
 Sedangkan pemberian air minum pada ternak dilakukan secara ad libitum.

Parameter yang Diamati
Pengukuran dilakukan pada pagi hari sebelum diberi makan dan minum, adupun parameter yang diukur dalam penelitian ini adalah: ukuran-ukuran tubuh meliputi Panjang Badan (PB), Lingkar dada (LD), dan Tinggi pundak (TP) serta koefisien cerna meliputi bahan kering, lemak, serat kasar, protein dan abu.
Penelitian ini menggunakan Rancangan Acak Kelompok (RAK) yang terdiri dari 3 kelompok ternak berdasarkan berat badan dan 4 perlakuan pakan. Untuk melihat pengaruh perlakuan dilakukan analisis ragam, bila terdapat pengaruh dari perlakuan maka dilanjutkan dengan uji jarak berganda Duncan (Steel and Torrie, 1991).

HASIL DAN PEMBAHASAN

Koefisien Cerna Bahan Kering Ransum

Pada perlakuan R1, R2, dan R3 dengan penambahan bungkil inti sawit sebanyak 100 gr, 200 gr dan 300 gr cenderung meningkatkan koefisien cerna bahan kering ransum bila dibandingkan dengan perlakuan R0 (kontrol), tetapi pada analisis ragam tidak menunjukkan perbedaan yang nyata (P>0.05). hal ini mungkin disebabkan kemampuan hewan penelitian untuk mentolerir perlakuan yang diberikan sangat besar atau mungkin juga karena pengaruh interaksi dari kecerea komponen-komponen bahan kering seperti protein kasar, serat kasar, lemak dan abu.

Komposisi dan bentuk fisik dari suatu bahan makanan juga akan mempengaruhi daya cerna bahan makanan tersebut, dimana apabila dibandingkan dengan rumput-rumputan maka makanan yang berbentuk biji-bijian akan lebih mudah dicerna hewan karena kendungan serat kasarnya yang relatif rendah daripada serat kasar rumput-rumputan, sehingga keceeran ransum yang kurang bahan makanan tambahan atau konsentrat cenderung lebih rendah.
Secara keseluruhan dapat disimpulkan bahwa penambahan bungkil inti sawit pada perlakuan R1, R2 dan R3 cenderung meningkatkan keberkaitan cerna bahan kering ransum, dimana pada perlakuan R3 didapat keberkaitan cerna bahan kering ransum tertinggi. Zemmelink (1980) dalam Huitema (1989) menyatakan bahwa laju makanan ternak yang berkualitas rendah didalam perut dapat dipercepat dengan penambahan bahan pelengkap yang kaya akan protein sehingga ransum akan lebih banyak dikonsumsi

Koefisien Cerna Protein Ransum

Rata-rata keberkaitan cerna protein ransum untuk masing-masing perlakuan R1, R2 dan R3 setelah dilakukan analisis statistik menunjukkan pengaruh yang sangat nyata (P<0.01). Setelah dilanjutkan dengan uji jarak berganda Duncan didapat hasil bahwa pemberian bungkil inti sawit sebanyak 100 gr, 200 gr dan 300 gr berpengaruh sangat nyata (P<0.01) dengan perlakuan kontrol (R0). Tabel 4. memperlihatkan rata-rata keberkaitan cerna protein selama penelitian.

Koefisien Cerna Serat Kasar Ransum

Hasil penelitian ini menunjukkan bahwa pemberian bungkil inti sawit sebanyak 100 gr, 200 gr dan 300 gr cenderung menurunkan keberkaitan cerna serat kasar. Berdasarkan hasil analisis statistik penambahan bungkil inti sawit sebanyak 100 gr, 200 gr dan 300 gr menunjukkan perbedaan yang nyata (P<0.05) dengan perlakuan tanpa bungkil inti sawit (kontrol). Hal ini dilihat pada Tabel 5.

Tabel 3. Rata-rata Koefisien Cerna Bahan Kering Ransum Selama Penelitian (%)

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Perlakuan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R0</td>
</tr>
<tr>
<td>1</td>
<td>65.70</td>
</tr>
<tr>
<td>2</td>
<td>65.56</td>
</tr>
<tr>
<td>3</td>
<td>65.90</td>
</tr>
<tr>
<td>Jumlah</td>
<td>197.16</td>
</tr>
<tr>
<td>Rataan</td>
<td>65.72</td>
</tr>
</tbody>
</table>

Tabel 4. Rata-rata Koefisien Cerna Protein Ransum Selama Penelitian (%)

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Perlakuan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R0</td>
</tr>
<tr>
<td>1</td>
<td>59.18</td>
</tr>
<tr>
<td>2</td>
<td>63.88</td>
</tr>
<tr>
<td>3</td>
<td>60.45</td>
</tr>
<tr>
<td>Jumlah</td>
<td>183.51</td>
</tr>
<tr>
<td>Rataan</td>
<td>61.17a</td>
</tr>
</tbody>
</table>

Kesimpulan : superskrip dengan huruf yang berbeda pada baris yang sama menunjukkan perbedaan yang sangat nyata (P<0.01)

Jurnal Agripet Vol. 6 No. 2 Tahun 2006
Tabel 5. Rata-rata Koefisien Cerna Serat Kasar Ransum Selama Penelitian (%)

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Perlakuan</th>
<th>R0</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>74.89</td>
<td>70.47</td>
<td>65.67</td>
<td>69.51</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>72.08</td>
<td>69.75</td>
<td>68.81</td>
<td>67.05</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>77.16</td>
<td>65.34</td>
<td>67.24</td>
<td>64.97</td>
</tr>
<tr>
<td>Jumlah</td>
<td></td>
<td>224.13</td>
<td>205.56</td>
<td>201.68</td>
<td>201.53</td>
</tr>
<tr>
<td>Rataan</td>
<td></td>
<td>74.71b</td>
<td>68.52a</td>
<td>67.23*</td>
<td>67.18*</td>
</tr>
</tbody>
</table>

Kesimpulan: superskrip dengan huruf yang berbeda pada baris yang sama menunjukkan perbedaan yang nyata (P<0.05).

Dari Tabel diatas terlihat bahwa semakin banyak penambahan bungkik inti sawit pada setiap perlakuan akan menurunkan rata-rata koefisien cerna serat kasar. Hal ini disebabkan oleh semakin meningkatnya kandungan protein ransum akibat penambahan bungkik inti sawit dan di dalam rumen mungkin populasai mikroba yang bersifat proteolytic lebih banyak, sehingga keceeraman protein cenderung lebih tinggi dibanding serat kasar. Koefisien cerna serat kasar pada perlakuan kontrol (R0) lebih tinggi karena protein ransum tersebut lebih rendah dibandingkan perlakuan kontrol R1, R2 dan R3 ini juga mungkin karena dengan tidak adaanya bungkik inti sawit, populasai mikroba rumen yang bersifat cellulolitik lebih dominan. Sesuai dengan pendapat Soewardi (1974) bahwa penambahan bahan makanan yang kaya akan protein atau nitrogen dapat menyebabkan menurunnya kandungan serat kasar ransum secara keseluruhan. Selanjutnya Arora (2) menambahkan pemberian makanan yang beracara kasar rendah secara kontinyu dapat mengubah populasi protozoa dan bakteri rumen menjadi populasi yang lebih banyak mencerna protein.

Panjang Badan

Hasil penelitian menunjukkan bahwa panjang badan kambing penelitian dengan pemberian bungkik inti sawit (BIS) secara statistik menunjukkan suatu perbedaan yang nyata (P<0.05).

Secara lengkap rata-rata pertambahan panjang badan kambing pada masing-masing perlakuan tercatat pada Tabel 6.

Dari rataan pertambahan panjang badan kambing Peranakan Etawah pada perlakuan R0, R1, R2, dan R3 yaitu sebesar 1.01 cm, 1.06 cm, 1.17 cm dan 1.39 cm, terlihat bahwa kambing yang diberikan 300 gam bungkik inti sawit (R3) relatif lebih tinggi pertambahan panjang badannya dibandingkan perlakuan lainnya. Sembari perlakuan kontrol (R0) diperoleh pertambahan panjang badan paling rendah. Hal ini bisa disebabkan pada perlakuan R3 kandungan protein dan energi lebih tinggi dibandingkan perlakuan-perlakuan lain.

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Perlakuan</th>
<th>R0</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1.03</td>
<td>1.00</td>
<td>1.17</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.17</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.00</td>
<td>1.17</td>
<td>1.17</td>
<td>1.17</td>
</tr>
<tr>
<td>Jumlah</td>
<td></td>
<td>3.03</td>
<td>1.06</td>
<td>1.17</td>
<td>4.17</td>
</tr>
<tr>
<td>Rataan</td>
<td></td>
<td>1.01b</td>
<td>1.06b</td>
<td>1.17b</td>
<td>1.39b</td>
</tr>
</tbody>
</table>

Keterangan: superskrip dengan huruf berbeda pada baris yang sama menunjukkan perbedaan yang nyata (P<0.05)

Respon Keceeraman Bahan Kering dan Ukuran Tubuh Kambing (Ir. Asril, M.Rm.Sc)

Tinggi Pundak

Perlakuan pemberian bungkil inti sawit menunjukkan pengaruh yang tidak nyata terhadap tinggi pundak kambing Peranakan Etawah penelitian. Secara umum rata-rata pertambahan tinggi pundak kambing Peranakan Etawah penelitian baik perlakuan R0, R1, R2, maupun R3 relatif sama (Tabel 7).

Lingkar Dada

Rata-rata pertambahan lingkar dada kambing Peranakan Etawah yang didapat pada penelitian ini tertera pada Tabel 8. Secara statistik hasil yang didapat mempunyai suatu pengaruh yang nyata (P<0.05).

Pada Tabel 8 dapat dilihat bahwa pertambahan lingkar dada tertinggi di dapat pada perlakuan R3 (tingkat pemberian bungkil inti sawit sebanyak 300 gr). Dengan kandungan protein dan energi yang lebih tinggi dari perlakuan lainnya maka perlakuan R3 cenderung lebih cepat laju pertumbuhannya.

Pertambahan lingkar dada pada perlakuan R1 dan R2 yang didapat pada penelitian ini terlihat sama, hal ini mungkin disebabkan terdapat perbedaan respon terhadap perbedaan perlakuan yang didiberikan pada penelitian ini. Pada perlakuan R2 dengan kandungan bungkil inti sawit sebanyak 200 gr mengandung protein dan energi lebih tinggi dari perlakuan R1 (100 gr bungkil inti sawit), tetapi karena perbedaan respon dari ternak terhadap pengaruh makanan tersebut bisa menyebabkan pertambahan lingkar dada yang sama pada kedua perlakuan.

| Tabel 7. Rataan Pertambahan Tinggi Pundak Kambing Peranakan Etawah pada Setiap Perlakuan (cm) |
|---|---|---|---|---|
| Kelompok | R0 | R1 | R2 | R3 |
| 1 | 0.86 | 0.67 | 1.17 | 1.00 |
| 2 | 0.83 | 0.83 | 0.67 | 0.50 |
| 3 | 0.50 | 0.67 | 0.67 | 1.17 |
| Jumlah | 2.19 | 2.17 | 2.51 | 2.67 |
| Rataan | 0.73 | 0.72 | 0.84 | 0.89 |

| Tabel 8. Rataan Pertambahan Lingkar Dada Kambing Peranakan Etawah pada Setiap Perlakuan Selama Penelitian (cm) |
|---|---|---|---|---|
| Kelompok | R0 | R1 | R2 | R3 |
| 1 | 1.50 | 1.50 | 1.67 | 1.83 |
| 2 | 1.17 | 1.50 | 1.33 | 1.50 |
| 3 | 1.17 | 1.17 | 1.17 | 1.50 |
| Jumlah | 3.84 | 4.17 | 4.17 | 4.83 |
| Rataan | 1.28^a | 1.39^{ab} | 1.39^{ab} | 1.61^b |

Keterangan : superskrip dengan huruf berbeda pada baris yang sama menunjukkan perbedaan yang nyata (P<0.05).

Jurnal Agripet Vol. 6 No. 2 Tahun 2006

KESIMPULAN

Berdasarkan hasil yang didapat dari penelitian ini dapat disimpulkan bahwa pemberian bungkil inti sawit pada ransum sebesar 100 gr, 200 gr dan 300 gr secara statistik memberikan pengaruh yang sangat nyata (P<0.01) terhadap koefisien cerna protein ransum dan berpengaruh nyata (P<0.05) terhadap koefisien cerna serat kasar ransum dan terhadap pertambahan panjang badan dan lingkar dada kambing Peranakan Etawah jantan. Tetapi tidak memberikan pengaruh yang nyata (P>0.05) terhadap koefisien cerna bahan kering dan pertambahan tinggi punduk.

DAFTAR PUSTAKA

Respon Kecermuan Bahan Kering dan Ukuran Tubuh Kambing (Ir. Asril, M.Rer.Sc)