Particle tracking simulation of marine debris using Lagrangian discrete and mesh spatial discretization in Banda Aceh waters

Koko Ondara¹, Guntur Adhi Rahmawan¹, Syahrul Purnawan²*

¹Research Institute for Coastal Resources and Vulnerability-KRP, Jl. Raya Padang-Painan km.16, Padang, West Sumatera, Indonesia.
²Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia.

ARTICLE INFO

ABSTRACT

Ocean dynamics has a direct impact on the distribution of objects or dissolved particles such as marine debris. Hydrodynamic studies are currently an important tool to identify the potential pollution in the region. Data were collected from March to September 2019 in the northern waters of Banda Aceh. Wind data were obtained using AWS and bathymetry data were collected using the single beam echosounder. The results showed that the wind direction on the coast of Banda Aceh City was dominant towards the Northwest and Northeast with a maximum speed of 9 m/s. Wind direction will highly influence the sea surface currents dynamics that lead to longshore currents and radiation currents occur in coastal areas.

Introduction

Ocean dynamics have an extensive scope, ranging in size from millimeters to thousands of kilometers. The dynamics and movement of water masses directly impact the distribution of mass and dissolved or suspended particles in the water column, such as plankton, sediment, nutrients, heat, salinity, and even marine debris (Rizal et al., 2010; Supiyati et al., 2011; Setiawan et al., 2018; Setiawan et al., 2019).

The conditions and dynamics of a very complex coastal area require calculations that are more than just a simple numerical scheme (Zhang et al., 2013; Kline et al., 2014; Brand et al., 2020). Spatial discretization equations are used to calculate the dynamics of continuity based on geometric space (mesh) and Lagrangian equations in determining the numerical scheme. The Lagrangian method uses the virtual movement of particles that follow the mass transport of water (Bennett, 2006; Amemou et al., 2020), hence the method were then used to describe the mass transport pattern of water formed in an area (Mancho et al., 2006; Bettencourt et al., 2012; Van- Sebille et al., 2018).

Model discretization is a process of transforming a continuous (infinite) model into a discrete (finite) model. The discretization process is carried out by derivating partial differential equations into finite difference equations. Discrete computations can be performed using the Mike21 software (Warren and Bach, 1992) a comprehensive modeling software to simulate hydraulic patterns in the coastal, estuary, or marine areas. The advantage of this software is that it creates a two-dimensional model that is easier to calculate, especially for applications in sea-level areas.

The condition of the Banda Aceh waters which are adjacent to the Indian Ocean, the Malacca Strait and the Andaman Sea makes this water area very dynamic. (Rizal et al., 2012; Ondara and Dhiauddin, 2020). As a city located at the northern tip of Sumatra Island, Banda Aceh has a strategic position contributing to the increasing ship traffic activity (Figure 1). Other impacts arising from anthropogenic activities are the presence of waste and sewage generated from human activities (Anderson et al., 2014). The waste disposals are mainly carried from the river flows into the coastal water environment...
and carried to the sea (Eerkes-Medrano et al., 2015; Hermabessiere et al., 2017). The sewage that flows into the sea influenced the simulation of hydrodynamic conditions making it essential to understand the distribution patterns and tracing of waste trails through particle tracking simulations in Banda Aceh waters. The results of this study can be used as a basis for policymaking in the development of regional potential and mitigation of marine debris pollution in the waters of Banda Aceh City.

Materials and Methods

Research location

The research was conducted in Banda Aceh waters from March to September 2019. Wind data collection (speed and direction) was measured using an Automatic Weather Station (AWS) installed at an altitude of 6 meters at coordinates 756649.00 E; 617512.00 N. AWS recording data was collected in April 2019 and June-September 2019.

Data setup

Bathymetry data were measured using a single beam dual frequency echo sounder conducted along the coastal area of Banda Aceh City. Bathymetric map data layout combined with the Dishidros bathymetry data to obtain a wider depth coverage area. The tidal data was collected from the forecasting data using the least square method from January to September 2019. The tidal data produced the tide and ebb values of the full moon and tides types. The currents characteristics were obtained using a 3D model using the flexible mesh method to determine the currents and waves patterns for each tide condition.

Marine debris particle tracking simulation used hydrodynamic data obtained from currents and waves modeling (raw data derived from hydrodynamics). Particles input for the simulation were classified into 6 different classes based on the mass, which are 0.01 µg; 0.01 mg, 0.1 mg; 1 gram; 100 grams and 500 grams. The selection of the mass size was based on the marine debris findings, which were found when collecting data on the debris mass along the coastal area. The parameters used in the particle tracking simulation are shown in Table 1. The initial condition of the particles (source initial condition) was collected in 4 different locations (Figure 2). Each of these locations is located, namely: first at 95.2388 E, 5,592 N; second at 95.2830 E, 5.6628 N; third at 95.3796 E, 5.6515 N and; fourth at 95.3122 E, 5.5846 N.

Table 1. Marine debris simulation parameters.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time simulation</td>
<td>01/01/2019 00.00.00 – 06/05/2019 00.00.00</td>
</tr>
<tr>
<td>Timestep</td>
<td>3600 s</td>
</tr>
<tr>
<td>Flood and dry</td>
<td>Drying depth : 0,005 m</td>
</tr>
<tr>
<td></td>
<td>Flooding depth : 0,05 m</td>
</tr>
<tr>
<td></td>
<td>Wetting depth : 0,1 m</td>
</tr>
<tr>
<td>Density</td>
<td>Barotropic</td>
</tr>
<tr>
<td>Eddy viscosity</td>
<td>Smagorinsky formulation 0,28</td>
</tr>
<tr>
<td>Bed resistance</td>
<td>Manning number 32 m(^{1/3})/s</td>
</tr>
<tr>
<td>Shallow water eq</td>
<td>High order time integration</td>
</tr>
<tr>
<td>Settlement particle</td>
<td>Include flocculation 0,1 m/s</td>
</tr>
</tbody>
</table>

Results

Wind

Wind speed and direction measurements were collected in July-September 2019 with a time step of every 30 minutes. This measurement was carried out to determine the dominant wind direction in the coastal area of Banda Aceh City because the surface
wind is one of the factors that mainly influence the direction of the water waves.

The measurement results showed different wind directions in April and June-September (Figure 3). In April, the dominant wind direction was towards the northwest, while in June-September 2019, it was towards the northeast. The data obtained in April showed the wind speed ranging from 0 m/s - 6.4 m/s. From the wind rose chart, it can be seen that the dominant wind was towards the Southwest with dominant speed ranging from 0-2 m/s. From June to September 2019, wind speed ranging from 0 m/s to 9.1 m/s. Figure 3 shows that the dominant wind direction is towards the northeast with a dominant speed ranging from 2-4 m/s.

The depth of the Krueng Aceh and Lampulo rivers was divided into 2 (two) areas: the depth in the river and the depth in the sea. The depth of the Krueng Aceh -river was limited to the end of the estuary (Figure 4), while the depth in the sea is limited from the estuary to 650 meters to the sea. The water’s ground state shape was described in a 2 (two) dimensional state in the form of contour lines containing the depth value.

The depth of the waters at Ulee Lheue ranges from 0-4.5 meters in the coastal area to a distance of 370 meters to the high seas (Figure 5). Meanwhile, in the river area, has a maximum depth of 7.6 m. The depth under the bridge is 2.5-4.5 meters, the darker the color of the waters indicates that the area is an area that has a deeper depth among other colors.
Figure 6 is a depth image of the local fishing boat Ulee Lheue shipping lane. The maximum depth at the study site is 8.5 meters. These results were the result of field data processing using interpolation to fill the data gaps. The existence of coastal structures such as breakwaters and port facilities affected the depth of the waters. The coastal structures will directly change the flow pattern and sediment transports, resulting in accretion and abrasion in the coastal areas. Sediment transports play an essential role and cause silting in the port area. Generally, the current around the port has a low speed and strength, so it is possible for silting in the port area.

The value of HWS (High Water Spring) is 0.73 cm, MHWS (Mean High Water Spring) is 0.62 cm, MHWL (Mean High Water Level) is 0.38 cm, MLWL (Mean low Water Level) is -0.38 cm, MLWS (Mean Low Water Spring) is -0.56 cm and LWS (Low Water Spring) is -0.69 cm. The tide value is 1.42 cm and the tide type of Banda Aceh waters is a mixed tide prevailing diurnal, wherein one day there are two tides and two ebbs with almost the same height.

Discussion

Marine debris particles in open waters analyzed based on simulations for 7 months showed that the surface currents carried marine debris in four different sources of debris at a speed of 0.2 m/s to 0.4 m/s. All marine debris can be seen passing through the boundary condition within 67 hours from the initial time to the northeast of the Aceh waters. The dynamics movement of marine debris for sources from the western area can be seen in Figure 8.
The current velocity during the simulation time ranges from 0.2 m/s to 0.4 m/s. Current conditions in the western waters around Breueh Island and Nasi Island have a more dynamic direction (Setiawan et al., 2018). The current movement spread to all directions with radial currents due to changes in topography, wind conditions, and dry land morphology. Marine debris particles originating from the western part spread out in different paths and move towards the northeast, passing through the boundary condition. The simulations were carried out for 5 months and showed that the garbage would not return to Aceh waters.

The 5 months simulation of marine debris originating from the north showed movements towards the northeast. Current velocity ranges from 0.0006 m/s to 2.5 m/s with the direction of the currents on the dominant coastal area moving along the coast (longshore current). In the western part of the Lampulo Port, a radiation stress current phenomenon occurs where there is a momentum gradient due to high variations in the component of coastal currents caused by the wind (Figure 9).

The movement of marine debris from sources in the eastern part of Banda Aceh will continue to move to the northeast until it passes through the boundary conditions. Within 6 hours from the start of the simulation, marine debris particles tended to move around the initial source of waste and further continued to move towards the northeast with surface water currents ranging from 0.001 m/s to 0.87 m/s (Figure 10).

Within 122 hours from the start of the simulation, marine debris particles continue to move towards the east and northeast through boundary conditions. There is a movement path for marine debris near Banda Aceh coastal area and because of the dominant longshore current, marine debris moves in the same direction as the coastline. The potential for debris accumulation in the estuary and around Lampulo Port is quite significant in the western and eastern parts of the port (Figure 11).

Marine debris particles in the northern part initially moved westward but then changed direction and tended to continue moving to the northeast. The movement of marine debris in the western and eastern parts tends to spread in all directions until it approaches the coast and then moves towards the northeast. Marine debris particles located in the estuary will spread towards the west coast and northern part of the river estuary and then more dominantly change towards the northeast. The potential for debris accumulation will occur at the river estuaries and the west coast of the river mouth (Figure 12).
Figure 12. The movement of marine debris with source debris from the west, east, north and south area.

Conclusion

The wind direction on the Banda Aceh coastal area is dominant to the Northwest and Northeast with a maximum speed of up to 9 m/s. Wind direction will strongly affect the dynamics of sea surface currents producing longshore currents and radiation currents in the coastal areas. The simulation of marine debris particles showed that from January to May 2019, the particles moved towards the northeast through boundary conditions (towards the offshore) and did not return to Aceh waters. Based on the simulation results, marine debris originating from open waters will not go to the coastal area, but a small portion of debris originating from river estuaries was stranded on the west coast and the rest went to the northeast of Aceh waters.

Acknowledgement

The authors would like to thank the Ministry of Marine Affairs and Fisheries (KKP) for this research activity for the 2019 Fiscal Year. The author also thanks the Research Institute for Coastal Resources and Vulnerability (LRSDKP) and the Faculty of Marine and Fisheries (FKP), Universitas Syiah Kuala for their assistance during the research activity.

References

How to cite this paper: