SHALLOW WATER EQUATION SOLUTION IN 2D USING FINITE DIFFERENCE METHOD WITH EXPLICIT SCHEME

Nuraini Nuraini, Syamsul Rizal, Marwan Marwan

Abstract


Abstract. Modeling the dynamics of seawater typically uses a shallow water model. The shallow water model is derived from the mass conservation equation and the momentum set into shallow water equations. A two-dimensional shallow water equation alongside the model that is integrated with depth is described in numerical form. This equation can be solved by finite different methods either explicitly or implicitly. In this modeling, the two dimensional shallow water equations are described in discrete form using explicit schemes.

Keyword: shallow water equation, finite difference and schema explisit.


REFERENSI

 1. Bunya, S., Westerink, J. J. dan Yoshimura. 2005. Discontinuous Boundary Implementation for the Shallow Water Equations. Int. J. Numer. Meth. Fluids. 47: 1451-1468.

2. Kampf Jochen. 2009. Ocean Modelling For Beginners. Springer Heidelberg Dordrecht. London New York.

3. Rezolla, L 2011. Numerical Methods for the Solution of Partial Diferential Equations. Trieste. International Schoolfor Advanced Studies.

4. Natakussumah, K. D., Kusuma, S. B. M., Darmawan, H., Adityawan, B. M. Dan  Farid, M. 2007. Pemodelan Hubungan Hujan dan Aliran Permukaan pada Suatu DAS  dengan Metode Beda Hingga. ITB Sain dan Tek. 39: 97-123.

5. Casulli, V. dan Walters, A. R. 2000. An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Meth. Fluids. 32: 331-348.

6. Triatmodjo, B. 2002. Metode Numerik  Beta Offset. Yogyakarta.



Full Text:

PDF


DOI: https://doi.org/10.24815/jn.v17i2.7997

Refbacks

  • There are currently no refbacks.


                                                             

©2000 Jurnal Natural (JN), Indonesia, Banda Aceh: www.jurnal.unsyiah.ac.id/natural | eISSN 2541-4062 | pISSN 1411-8513 | Contact: jurnal.natural@fmipa.unsyiah.ac.id | The JN site and its metadata are licensed under CC BY