Analysis of purple cabbage (Brassica oleracea var. capitata f. rubra) and beetroot (Beta vulgaris) extracts as dye for Dye Sensitized Solar Cell (DSSC) application

Juli Erlia, Edwar Iswardy, Nurul Azmi, Mursal mursal

Abstract


Abstrak. Telah dilakukan analisis karakteristik zat warna ekstrak umbi bit (Beta vulgaris) dan kubis ungu (Brassica oleracea var. capitata f. rubra) sebagai aplikasi Dye Sensitized Solar Cell (DSSC). Penelitian ini bertujuan untuk mempelajari karakteristik dye ekstrak kubis ungu, umbi bit dan gabungan keduanya terhadap rentang panjang gelombang, energi gap dan gugus fungsi untuk pengaplikasian pada DSSC. Dye alami yang digunakan dari ekstrak umbi bit (Beta vulgaris) dan kubis ungu (Brassica oleracea var. capitata f. rubra) dengan proses maserasi dan evaporasi. Kemudian ekstrak tersebut dikarakterisasi menggunakan Spektrofometer UV-Vis dan Fourier Transform Infrared (FTIR). Hasil penelitian menunjukkan ekstrak umbi bit (Beta vulgaris), kubis ungu (Brassica oleracea var. capitata f. rubra) dan gabungan keduanya mampu menyerap pada panjang gelombang 390-520 nm, 640-680 nm, dan 420-500 nm. Puncak maksimum yang dihasilkan adalah 480 nm, 665 nm, dan 477 nm.  Energi gap berturut-turut sebesar 2.58 eV, 1.86 eV, dan 2.59 eV.

 

Abstract. An analysis of the dye characteristics of beetroot (Beta vulgaris) and purple cabbage (Brassica oleracea var. capitata f. rubra) extracts have been carried out as a Dye Sensitized Solar Cell (DSSC) application. This research aimed to study the dye characteristics of purple cabbage, beetroot, and a combination of the two extracts on the wavelength range, energy gap, and functional groups for the application of DSSC. The natural dye is used from extracts of beetroot (Beta vulgaris) and purple cabbage (Brassica oleracea var. capitata f. rubra) by maceration and evaporation processes. Then the extract was characterized using UV-Vis Spectrophotometer and Fourier Transform Infrared (FTIR). The results showed that beetroot extract (Beta vulgaris), purple cabbage (Brassica oleracea var. capitata f. rubra) and the combination of the two were able to absorb at wavelengths of 390-520 nm, 640-680 nm, and 420-500 nm. The maximum peaks produced were 480 nm, 665 nm, and 477 nm. The energy gap is 2.58 eV, 1.86 eV, and 2.59 eV, respectively.


Keywords


Beetroot; Purple cabbage; Dye; Optical properties; Chemical Group

Full Text:

PDF

References


Buraidah, M. H., Teo, L. P., Yusuf, S. N. F., Noor, M. M., Kufian, M. Z., Careem, M. A., Majid, S. R., Taha, R. M., & Arof, A. K. (2011) TiO2/Chitosan-NH4 I (+I2)-BMII-based dye Synthesized Solar Cells With Anthocyanin Dyes Extracted From Black Rice and Red Cabbage. International Journal of Photoenergy. 11: 1–11.

Bhogaita, M. A. D., Shukla, R. P., & Nalini. (2016) Recent Advances in Hybrid Solar Cell Based on Natural Dye Extracts from Indian Plant Pigment as Sensitizers. Solar Energy. 137: 212-224.

Calogero, G., Yum, J. H., Sinopoli, A., Di Marco, G., Grätzel, M., & Nazeeruddin, M. K. (2012) Anthocyanins and Betalain as Light-harvesting Pigments for Dye-sensitized Solar Cells. Solar energy. 86(5): 1563-157.

Christian, D., Miguel, A., Pérez-Osorio, Christopher, S. K., Paul, P., Christopher E. P., Peter, J., Feliciano, G., Soon J. J., & Klaus, K. (2014) TiO2 Anatase with a Bandgap in the Visible Region. Nano Letters. 14(11) : 6533–6538.

Kim, D. Y., & Kang, M. (2012) Diversification of Photoelectric Efficiency on DSSCs Assembled According to The Change of Coating Layers of Px-TiO2 films. Journal Material Chemistry and Physics. 136: 947–953.

Eli, D., Musa, G. P., dan Ezra, D. (2016) Chlorophyll and Betalain as Light Harvesting Pigments for Nanostructured TiO2 Based Dye-Sensitized Solar Cells. Journal of Energy and Natural Resources. 5(5), 53-58.

Hasan, E. S., Jahiding, M., Hasrin, Sudiana I. N., & Idris, I. (2010) Karakterisasi Lapisan Titanium Dioksida (TiO2) sebagai Bahan Dielektrik Sensor Kelembaban Jenis Kapasitif. Jurnal Aplikasi Fisika. 6(2): 83-87.

Oktavi, R. A., Cahyono, B., & Suzery, M. (2020) Enkapsulasi Ekstrak Antosianon dari Bunga Rosela (Hibiscus sabdariffa L) dengan Variasi Penyalut. Akta Kimia Indonesia. 5(2): 86-101.

O'Regan, B., Grätzel, M., (1991). A Low-cost, High Efficiency Solar Cell based on Dye-sensitized Colloidal TiO2 Films. Nature. 353: 737–740.

Sakshi, Pramod, K. S., & Vivek, K. S.,(2020). Widening Spectral Range of Absorption using natural dyes: Applications in Dye Sensitized Solar Cell. Materials Today: Proceedings. 12(287): 2214-7853.

Satapathi, S., Hardeep, S. G., Sriya. D., Lian, L., Lynne, S., Micah, J. G., & Jayant, K. (2014) Performance Enhancement of Dye-Sensitized Solar Cells By Incorporating Grapheme Sheets of Various Sizes. Applied Surface Science. 314: 638-641.

Sengupta, D., Mondal, B., & Mukherjee, K. (2015) Visible Light Absorption and Photo-Sensitizing Properties of Spinach Leaves and Beetroot Extracted Natural Dyes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 148: 85-92.

Sinha, D., De, D., Goswami, D., & Ayaz, A. (2018) Fabrication of DSSC With Nanostructured ZnO Photo Anode and Natural Dye Sensitizer. Materials Today: Proceedings. 5(1): 2056-2063




DOI: https://doi.org/10.24815/jacps.v11i3.25170

Refbacks

  • There are currently no refbacks.


INDEXED AND HARVESTED BY

    

 

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

©2020 | J. Aceh Phys. Soc. | Banda Aceh, Indonesia | www.jurnal.unsyiah.ac.id/JAcPS | E-ISSN 2355-8229

 

SERTIFIKAT-JACPS-S3-001