Resistance status and physiological responses of Dactyloctenium aegyptium to diuron herbicide in pineapple plantation

RESTI PUSPA KARTIKA SARI, NANIK SRIYANI, YUSNITA YUSNITA, HIDAYAT PUJISISWANTO

Abstract


Diuron herbicide has been used in the pineapple plantation in Lampung, Indonesia, for more than 35 years. It has been realized that the use of herbicides with the same mode of action intensively can speed up the evolution of resistant weeds over a long period of time. This study aimed to determine whether Dactyloctenium aegyptium from pineapple plantation has evolved resistance to diuron and to examine whether the resistance correlates with the weed physiological activities. The study was conducted at the University of Lampung, from September 2018 to March 2019. The study consisted of two stages, i.e. Stage 1: Weed resistance test and Stage 2: Physiological activity test on resistant weed. The study used a split-plot design. The main plot was the origins of weeds (exposed and unexposed to diuron) and thhe supplots was the diuron dose. The result showed that D. aegyptium exposed has high-level resistance to diuron. The physiological activities of D. aegyptium which has a high level of diuron resistance exhibited higher carbon assimilation, stomatal conductance, and transpiration rates than the sensitive D. aegyptium.


Keywords


carbon assimilation; Dactyloctenium aegyptium; resistance; stomatal conductance; transpiration

References


Indonesia Central Bureau of Statistic. 2017. Statistics of Annual Fruit and Vegetable Plants Indonesia. (Jakata: BPS-Statistics Indonesia).

Sunarjono, H. 2008. Gardening 21 types of fruit plants. (Jakarta: Penebar Swadaya).

Pineapple Cultivation Team of PT. GGF. 2013. Practical guidelines for pineapple cultivation at PT. Great Giant Fruits. PT. GGF, Terbanggi Besar, Lampung, Indonesia.

Georghiou, G.P.; Taylor, C.E. 1986. Factors influencing the evolution of resistance. In: Committee on Strategies for the Management of Pesticide Resistant Pest Populations., National Academy Press, Washington, D.C. pp 157-169.

Pannell, D.J.; Tillie, P.; Rodriguez-Cerezo, E.; Ervin, D.; Frisvold, G.B. 2016. Herbicide resistance: economic and environmental challenges. AgBioForum. 19 136–155.

Silva, D.R.O.; Vargas, L.; Agostinetto, D.; Santos, F.M. 2017. Photosynthetic performance of glyphosate resistant and glyphosate susceptible hairy fleanvane under light intensity. Planta Daninha. 35 3–8.

Tcherkez, G.; Limami, A.M. 2019. Net photosynthetic CO2 assimilation: more than just CO2 and O2 reduction cycles. New Phytol. 223 520−52.

Heap, I. 2019. The international survey of herbicide resistant weeds. http://www.weedscience.com/. (Accessed August 24, 2019).

Manurung, M.S. 2018. Resistance test of Dacytiloctenium aegyptium, Digitaria ciliaris and Eleusine indica from Central Lampung pineapple plantations (Ananas comosus L.) against diuron herbicide. Thesis. Faculty of Agriculture, University of Lampung, Indonesia, pp.93.

Panozzo, S.; Scarabel, L.; Collavo, A.; Sattin, M. 2015. Protocols for robust herbicide resistance testing in different weed species. J. Vis. Exp. 101 1–10.

Hendarto, H. 2017. Resistance of Cyperus rotundus, Dactyloctenium aegyptium, Asystasia gangetica against bromacil and diuron herbicides in pineapple plantations in Central Lampung. Thesis. Faculty of Agriculture, University of Lampung, Indonesia, pp. 80.

Guntoro, D.; Fitri, T.Y. 2013. Herbicide activity of cyhalofop - butyl and penoxulam active ingredients for several types of rice weed. Bul. Agrohorti. 1 140–148.

Ahmad-Hamdani M.S.; Owen, M.J.; Yu, Q.; Powles, B.P. 2012. ACCase inhibiting herbicide-resistant Avena spp. populations from the western ausrtralian grain belt. Weed. Technol. 26 130–136.

Heap, I. 2014. Herbicide resistant weeds. Integrated Pest Mangement. 281-301.

Chinalia, F.A.; Regali-Seleghin, M.H.; Correa, E.M. 2007. 2,4-D toxicity: cause, effect and control. Terrestr Aquat Environ Toxicol. 1 24-33.

Lu, H.; Yu, Q.; Han, H.; Owen, M.J.; Powles, S. 2019. Metribuzin resistance in a wild radish (Raphanus aphanistrum) population via both psbA gene mutation and enhanced metabolism. J. Agric. Food Chem. 67 1353–1359.

Fuerst, E.P.; Norman, M.A. 1991. Interactions of herbicides with photosynthetic electron transport. Weed. Sci. 39 458–464.

Streit, N.M.; Canterle, L.P.; do Canto, M.W.; Hecktheuer, L.H.H. 2005. The chlorophylls. Ciencia Rural. 35 748−755.

Kusumayuni, E.; Sriyani N.; Yusnita; Hapsoro, D.; Utomo, S.D. 2021. Long-term application of diuron herbicides caused Eleusine indica weeds to become resistant to diuron. IOP Conf. Ser: earth Environ. Sci. 739 0102034.

Figueiredo, M. R.; Leibhart, L.J.; Reicher, Z.J.; Tranel, P.J.; Nissen, S.J.; Westra, P.; Bernards, M.L.; Kruger, G.R.; Gaines, T.A.; Jugalam, M. 2018. Metabolism of 2,4-dichlorophenoxyacetic acid contributes to resistance in a common waterhemp (Amaranthus tuberculatus) population. Pest Manag Sci. 74 2356−2362.

Powles, S.B.; Yu, Q. 2010. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 61 317–347.

Dusenge, M.E.; Duarte, A.G.; Way, D.A. 2019. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist. 221 32−49.

Elmore, C.D.; Paul, R.X. 1983. Composite list of C4 weeds. Weed. Sci. 31 686−692.

Ziska, L.H. 2001. Changes in competitive ability between a C4 crop and a C3 weed with elevated carbon dioxide. Weed. Sci. 49 622−627. Lambers, H.; Pons, T.L.; Chapin, F.S. 2008. Plant physiological ecology 2nd ed. (New York: Springer Science + Bussiness Media LLC).

Lambers, H.; Pons, T.L.; Chapin, F.S. 2008. Plant physiological ecology 2nd ed. (New York: Springer Science + Bussiness Media LLC).

Messinger, S.M.; Buckley, T.N.; Mott, K.A. 2006. Evidence for involvement of photosynthetic processes in the stomatal response to CO2. Plant. Physiol. 12 771−778.

Davies, F.S.; Flore, J.A. 1986. Flooding, gas exchange and hydraulic root conductivity of highbush blueberry. Physiol. Plant. 67 545–551.

Das, V.S.R.; Santakumari, M. 1975. Stomatal behaviour four classes of herbicides as a basis of selectivity to certain weeds and crop plants. Proc. Indian. Acad. Sci. 82 108–116.

Bhatla, S.C. 2018. Plant physiology in agriculture and biotechnology. (Singapore: Springer Nature).

Shuang, B.; Liu, W.; Wang, H.; Zhao, N.; Jia, S.; Zou, N.; Gui, W.; Wang, J. 2018. Enhanced herbicide metabolism and metabolic resistance genes identified in tribenuron-methyl resistant Myosoton aquaticum L. J. Agric. Food Chem. 66 9850–9857.


Full Text: PDF

DOI: 10.24815/jn.v22i3.25286

Refbacks

  • There are currently no refbacks.