Comparison of two DNA extraction methods for dry Leaf Dipterocarpaceae

ESSY HARNELLY, NITA TAUHIDA, ISKANDAR ZULKARNAIN SIREGAR

Abstract


DNA extraction is the first step in obtaining high-concentration and high-purity DNA that can use in the subsequent steps. Because the leaf structure is challenging and contains several secondary metabolites that can affect DNA extraction results, DNA extraction on dry leaves of Dipterocarpaceae is considered problematic. This research aims to find a suitable method for extracting DNA from the preserved Dipterocarpaceae leaves. Preserved leaves of Dipterocarpaceae in silica gel will dry up, making them tough to destroy. Perform DNA extraction is generally using CTAB buffers or extraction kits. According to the results of this study, extraction with modified CTAB buffer result in DNA with higher concentration and purity values than DNA extracted with the kit. DNA isolated from the modified CTAB can be used as a template in the PCR process to amplify the matK gene.


Keywords


CTAB, DNeasy, ekstraksi DNA, matK, PCR

References


Brearley, F.Q.; Banin, L.F.; Saner, P. 2017. The ecology of the Asian dipterocarps. Plant Ecol. Divers. 9 429-436.

Usmadi, D.; Wahyuni, S.; Melani, K. 2018. Dipterocarpaceae potential as CO2 absorber and carbon storage in Bogor Botanical Gardens. Prosiding Konservasi Tumbuhan Tropika: Kondisi Terkini dan Tantangan ke Depan. Cibodas: UPT Balai Konservasi Tumbuhan Cibodas.

Ashton, P.S. 1989. Dipterocarp reproductive biology. In: Lieth H. Werger MJA (eds). Tropical forest ecosystems: biogeographical and ecological studies. Ecosystems of the World Series, 14B. (Amsterdam: Elsevier Science Publishers).

Purwaningsih. 2004. Sebaran ekologi dipterocarpaceae di Indonesia. Biodivers J. 5 89-95.

Guan, S.L.; Yen, S.Y. 2000. Conservation of dipterocarpaceae in Peninsular Malaysia. J. Trop. For. Sci. 12 593-615.

Rosdayanti, H.; Siregar, U.J.; Siregar, I. 2019. Karakter penciri morfologi daun meranti (Shorea spp) pada area budidaya ex-situ KHDTK Haurbentes. Media Konservasi. 24 207-215.

Hebert, P.D.; Cywinska, A.; Ball, S.L.; deWaard, J.R. 2003. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270 313-321.

Aboul-Maaty, N.A.F.; Oraby, H.A.S. 2019. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull. Natl. Res. Cent. 43 25-35.

Abdel-Latif, A.; Osman, G. 2017. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods. 131-9.

Shaw, J.; Lickey, E.B.; Schilling, E.E.; Small, R.L. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot. 94 275-288.

Heckenhauer, J., Barfuss, M.H., Samuel, R. 2016. Universal multiplexable matK primers for DNA barcoding of angiosperms. Appl. Plant Sci. 4(6), 1500137.

Varma, A.; Padh, H.; Shrivastava, N. 2007. Plant genomic DNA isolation: an art or a science. Biotechnol. J. 2 386-392.

Mornkham, T.; Wangsomnuk, P. P.; Wangsomnuk, P.; Jogloy, S.; Pattanothai, A.; Fu, Y.B. 2012. Comparison of five DNA extraction methods for molecular analysis of Jerusalem artichoke (Helianthus tuberosus). Genet. Mole. Res. 11 572-581.

Oda, Y.; Sadakane, K.; Yoshikawa, Y.; Imanaka, T.; Takiguchi, K.; Hayashi, M.; Kenmotsu, T.; Yoshikawa, K. 2016. Highly concentrated ethanol solutions: good solvents for DNA as revealed by single-molecule observation. Chem. Phys. Chem. 17 471-473.

Čermáková, E.; Zdeňková, K.; Demnerová, K.; Ovesná, J. 2021. Comparison of methods to extract PCR-amplifiable DNA from fruit, herbal and black teas. Czech J. Food Sci. 39 410-417.

Azmat, M.A.; Khan, I.A.; Cheema, H.M.; Rajwana, I.A.; Khan, A.S.; Khan, A.A. 2012. Extraction of DNA suitable for PCR applications from mature leaves of Mangifera indica L. J. Zhejiang Univ. Sci. B. 13(4) 239-243.

Chase, M.W.; Knapp, S.; Cox, A.V.; Clarkson, J.J.; Butsko, I.Y.; Joseph, J.; Savolainen, V.; Parokonny, A.S. 2005. Land plants and DNA barcodes: short-term and long-term goals. Proc. Biol. Sci. 360 1889-1895.

Fazekas, A.J.; Kesanakurti, P.R.; Burgess, K.S.; Percy, D.M.; Graham, S.W.; Barrett, S.C.H.; Newmaster, S.G.; Hajibabaei, M.; Husband, B.C. 2009. Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Mol. Ecol. Resour. 9 130-139.

Hebert, P.D.N.; Gregory, T.R. 2005. The promise of DNA barcoding for taxonomy. Sys. Biol. 54 852-859.

Small, R.L.; Cronn, R.C.; Wendel, J.F. 2004. Use of nuclear genes for phylogeny reconstruction in the plant. Aust. Syst. Bot. 17 145-170

Yu, J. Xue, J.H.; Zhou, L. 2011. New universal matK primer for DNA barcoding angiosperms. J. Sys. Evol. 49 176-181.

Chatrath, P.; Choudhary, M.; Tarafdar, A. 2013. An efficient protocol for genomic DNA isolation from field-grown mature leaves of Pennisetum gluacum. J. Biotech. 8 30-34.

Moura, C.C. de M.; Brambach, F.; Bado, K.J.H.; Krutovsky, K.V.; Kreft, H.; Tjitrosoedirdjo, S.S.; Siregar, I.Z.; Gailing, O. 2019. Integrating DNA barcoding and traditional taxonomy for the identification of dipterocarps in remnant lowland forests of Sumatra. Plants. J. 8 461-475.


Full Text: PDF

DOI: 10.24815/jn.v22i3.26588

Refbacks

  • There are currently no refbacks.